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Diophantine satisfiability

Definition (Diophantine satisfiability decision problem)

Let L := {0, s,+, ·} be the base language of arithmetic and let T
be a theory in a language L′ ⊇ L. Is

DT :=

{
(t(x̄), u(x̄))

∣∣∣∣ t(x̄), u(x̄) are L-terms such that

T ∪ {∃x̄ t(x̄) = u(x̄)} is consistent

}
decidable?

Observation
DT = {(t, u) |T |− ∀x̄ t ̸= u}c . Thus DT is decidable if and only if
the set of T -refutable Diophantine equations is decidable.
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Current results

▶ DQ is decidable where Q is Robinson arithmetic1

▶ DT is undecidable for theories T which extend I∆0 + EXP
(consequence of the MRDP theorem)2

▶ DT is undecidable for theories T which extend IU−
1
3

▶ Decidability of DIOpen where IOpen is theory of open
induction over {0, s,+, ·,≤} is long-standing open problem4

▶ We show Diophantine decidability of the theory of open
induction over {0, s, p,+, ·}

1Jěr16.
2GD82.
3Kay93.
4She64.
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IOp

▶ Language Lp := {0, s,+, ·, p}

▶ Base theory A: universal closures of

s(x) ̸= 0 (A1)

p(0) = 0 (A2)

p(s(x)) = x (A3)

x + 0 = x (A4)

x + s(y) = s(x + y) (A5)

x · 0 = 0 (A6)

x · s(y) = x · y + x (A7)

▶ Induction axiom I (φ(x , z̄))

∀z̄ (φ(0, z̄) → ∀x (φ(x , z̄) → φ(s(x), z̄)) → ∀x φ(x , z̄))

▶ IOp := A ∪ {I (φ) |φ quantifer-free Lp-formula}
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IOp
Result by Shepherdson5

IOp is equivalent to A together with universal closures of

x = 0 ∨ x = s(p(x)) (B1)

x + y = y + x (B2)

(x + y) + z = x + (y + z) (B3)

x + y = x + z → y = z (B4)

x · y = y · x (B5)

x · (y · z) = (x · y) · z (B6)

x · (y + z) = x · y + x · z (B7)

and

dx = dy →
d−1∨
i=0

(z + i) · x = (z + i) · y (C ′
d) for d ≥ 2.

5She67.
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Related theories

▶ AB := {A1, . . . ,A7,B1, . . . ,B7}

▶ AB∃ := (AB \ {A2,A3,B1})∪
{
B∃
1

}
where B∃

1 is the universal
closure of

x = 0 ∨ ∃y x = s(y)

▶ ABCd := AB∃ ∪ {Cd | d ≥ 2} where Cd is the universal
closure of

dx = dy → x = y

Theorem (Schmerl6)

DIOp = DAB = DAB∃ = DABCd

Main Theorem
DIOp is decidable.

6Sch88.
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Proof strategy

▶ By result from Schmerl it suffices to show decidability of DAB∃

▶ Construct a specialized proof calculus AB operating on Z[V ]

▶ Show soundness and completeness of AB with respect to
Diophantine satisfiability in AB∃

▶ Show decidability of AB
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Terms as polynomials

▶ Let V be the set of variables.

▶ To a term t we assign the polynomial poly(t) ∈ N[V ] it
evaluates to.

▶ To a p ∈ N[V ] we assign a term p (by choosing a fixed
ordering on V ) such that

Lemma
For every term t we have AB∃ |− t = poly(t).



Equations as polynomials

▶ For p ∈ Z[V ] and a monomial m we write [m]p for the
coefficient of m in p.

▶ We set

p+ :=
∑

m:[m]p>0

([m]p)m p− := −
∑

m:[m]p<0

([m]p)m.

Consider the additive cancellation axiom

x + y = x + z → y = z (B4)

Lemma
Let t, u be terms and set p := poly(t)− poly(u). Then
AB∃ |− t = u ↔ p+ = p−
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Calculus AB
signed rule

Definition (signed polynomial)

p ∈ Z[V ] is positively signed if all coefficients of p are
non-negative and the constant coefficient is positive.

p is negatively signed if −p is positively signed.
p is signed if it is positively or negatively signed

Consider the axiom A1

s(x) ̸= 0

We translate this into an initial inference rule on polynomials

p signed

where p ∈ Z[V ] is signed
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Calculus AB
zero-or -successor rule

Consider the axiom B∃
1 , the universal closure of

x = 0 ∨ ∃y x = s(y)

In AB∃ \
{
B∃
1

}
, instead of considering all possible instances of B∃

1

it is enough consider variable instances:

Proposition

Let t be a term and let x1, . . . , xn be all its free variables. Then

AB∃ \
{
B∃
1

}
,B∃

1 [x1], . . . ,B
∃
1 [xn] |− B∃

1 [t]



Calculus AB
zero-or -successor rule

Let X be a set of variables. We set

Θ(X ) := {θ : X → N[V ] | for all x ∈ X : θ(x) ∈ {0, x + 1}}

Let vars(p) be the set of variables that occur in p ∈ Z[V ]. We
translate B∃

1 into an inference rule

pθ for all θ ∈ Θ(vars(p))
p zero-or -successor

where p is not signed.



Calculus AB
zero-or -successor rule

Let X be a set of variables. We set

Θ(X ) := {θ : X → N[V ] | for all x ∈ X : θ(x) ∈ {0, x + 1}}

Let vars(p) be the set of variables that occur in p ∈ Z[V ]. We
translate B∃

1 into an inference rule

pθ for all θ ∈ Θ(vars(p))
p zero-or -successor

where p is not signed.



Calculus AB
Example

Let AB be the proof calculus operating on Z[V ] with the inference
rules signed and zero-or -successor .
We abbreviate signed as s and zero-or -successor as z :

1
s −2y − 1

s −2x − 1
s

−1
s −1

s −1
s

2xy + 2x + 2y + 1
s

2xy − 1
z

2xy − 2x − 2y + 1
z
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Calculus AB
Soundness and Completeness

Theorem (Soundness and Completeness of AB)
AB |− ∀x̄ t ̸= u if and only if AB |− poly(t)− poly(u)

Proof sketch.
Do proof translations in both directions.
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Tilted polynomials

Definition (tilted polynomial)

We say p ∈ Z[V ] is positively tilted if for all monomials m− with
[m−]p− ̸= 0 there exists a monomial m+ with [m+]p+ ̸= 0 such
that m− strictly divides m+.

We say p is negatively tilted, if −p is positively tilted.

If p is positively or negatively tilted, we say p is tilted.

Example

x2 − x + 1

xy − 2x − 2y

}
tilted

0

x − y

xy − x2 − y2

 not tilted
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Closure property in AB

Lemma
If p ∈ Z[V ] is positively (negatively) signed, then p is positively
(negatively) tilted.

Lemma
Let p ∈ Z[V ] and θ(x) := x + 1. Then p is positively (negatively)
tilted if and only if pθ is positively (negatively) tilted.

Corollary

If AB |− p, then p is tilted.



An order on N[V ]

▶ For p ∈ N[V ] we write mons(p) for the multiset of monomials
where each monomial m occurs [m]p many times.

▶ For p, q ∈ N[V ] we write p <mon q if for all
m ∈ mons(p)−mons(q) there exists an
m′ ∈ mons(q)−mons(p) such that m strictly divides m′.

▶ Note: p ∈ Z[V ] is positively (negatively) tilted if and only if
p+ >mon p− (p− >mon p+).

▶ <mon is the multiset extension of strict divisibility of
monomials.

Lemma
<mon is a well-founded partial order on N[V ].
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monomials.
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An order on tilted polynomials

▶ For p, q ∈ Z[V ] we write p ≺vars q if |vars(p)| < |vars(q)|.

▶ For tilted p we set min(p) := min<mon(p
+, p−).

▶ For tilted p, q we write p ≺mon q if min(p) <mon min(q).

▶ Let ≺t to be the lexicographic product ≺vars × ≺mon.

Lemma
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For p ∈ Z[V ] we recursively define the proof candidate tree of p as
the smallest tree T (p) such that

▶ p is a node of T (p) and

▶ if q is a node of T (p), q is tilted and not signed, then T (p)
contains all nodes qθ for θ ∈ Θ(vars(q)). In that case (q, qθ)
is an edge of T (p).
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Proof candidate trees
Finiteness of T (p)

Lemma
T (p) is finitely branching.

Lemma
Let p ∈ Z[V ] be tilted and let θ ∈ Θ(vars(p)). Then p ≻t pθ.

Proposition

T (p) is finite.

Proof.
We use Kőnig’s lemma:

▶ T (p) is finitely branching.

▶ If a branch in T (p) only contains tilted polynomials, then it is
well-ordered by ≺t which means it is finite.

▶ If a branch in T (p) contains a non-tilted polynomial, the
branch must be finite since no edges originate from non-tilted
polynomials.
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Decision procedure.

Construct T (p) and check if all leaves are signed polynomials.



Decision procedure

Lemma
AB |− p if and only if all leaves of T (p) are signed polynomials.

Corollary

AB is decidable.

Decision procedure.

Construct T (p) and check if all leaves are signed polynomials.



Calculus ABC
Consider the additional axiom C , the universal closure of

x ̸= 0 → (x · y = x · z → y = z)

Over AB, it is equivalent to the universal closure of

y ̸= z → s(x) · y ̸= s(x) · z .

This translates into the inference rule

q
pq factor

where p is signed.

Let ABC be the proof calculus consisting of the rules from AB and
the additional rule factor .

Theorem (Soundness and Completeness of ABC)
ABC |− poly(t)− poly(u) if and only if ABC |− ∀x̄ t ̸= u
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Equivalence of AB and ABC
Lemma
If p is signed and θ is a substitution, then pθ is signed.

Lemma
If p and q are signed, then pq is signed.

Proposition

ABC |− p if and only if AB |− p.

Proof sketch for ⇒.
▶ Move instances of factor above instances of zero-or -successor

(uses that signed polynomials are closed under substitution).

▶ Top-most chains of factor inferences can be replaced by a
single signed using previous lemma.

Corollary

DAB = DABC
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Summary

Main Theorem
DIOp is decidable.

Proof sketch.
▶ By result from Schmerl it suffices to prove decidability of DAB

▶ Construct a specialized proof calculus AB operating on Z[V ].

▶ Show soundness and completeness with respect to
disequalities using proof-theoretic methods.

▶ Show that AB is decidable with closure properties and an
appropriate well-order.



Outlook

Theory T DT decidable?

Q yes7

IOp, AB, ABCd , ABC yes
PA− unknown

IOpen unknown
extensions of IU−

1 no8

extensions of I∆0 + EXP no9

7Jěr16.
8Kay93.
9GD82.
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35.4 (1967), pp. 25–31.

https://doi.org/https://doi.org/10.1016/0168-0072(88)90051-6
https://www.sciencedirect.com/science/article/pii/0168007288900516
https://www.sciencedirect.com/science/article/pii/0168007288900516

	Theories
	Proof strategy
	Decidability
	Conclusion
	References

