On end extensions of models of open induction

Ch. Cornaros \& C. Dimitracopoulos

42ème Journées sur les Arithmétiques Faibles University of Aegean, Karlovassi

25 September 2023

Theorem 1 (MacDowell-Specker, 1961). Every model of $P A$ has a proper elementary end extension.

Aim. Miniaturize the MacDowell-Specker theorem
$I \Sigma_{n}$: induction for Σ_{n} formulas (plus base theory)
$B \Sigma_{n}: I \Delta_{0}+$ collection for Σ_{n} formulas

Theorem 1 (MacDowell-Specker, 1961). Every model of $P A$ has a proper elementary end extension.

Aim. Miniaturize the MacDowell-Specker theorem
$I \Sigma_{n}$: induction for Σ_{n} formulas (plus base theory)
$B \Sigma_{n}: I \Delta_{0}+$ collection for Σ_{n} formulas
Theorem 2 (Paris \& Kirby 1978).
(a) For all $n \in \mathbb{N}, \quad I \Sigma_{n+1} \Rightarrow B \Sigma_{n+1} \Rightarrow I \Sigma_{n}$
and the converse implications are false.
(b) For $n \geq 2$, if M is a countable model of $B \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.

Problem 1. For $n \geq 2$, does every model of $B \Sigma_{n}$ have a proper Σ_{n}-elementary end extension satisfying $I \Delta_{0}$?
"Theorem" (Clote 1986). For any $n \geq 2$, if M is a model of $B \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.
"Theorem" (Clote 1986). For any $n \geq 2$, if M is a model of $B \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.
Theorem 3 (Clote 1998). For any $n \geq 2$, if M is a model of $I \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.
"Theorem" (Clote 1986). For any $n \geq 2$, if M is a model of $B \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.
Theorem 3 (Clote 1998). For any $n \geq 2$, if M is a model of $I \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.
Problem 2. (a) Does every model of $I \Sigma_{1}$ have a proper Σ_{1}-elementary end extension satisfying $I \Delta_{0}$?
(b) Does every model of $I \Delta_{0}$ have a proper Δ_{0}-elementary end extension satisfying $I \Delta_{0}$?
"Theorem" (Clote 1986). For any $n \geq 2$, if M is a model of $B \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.
Theorem 3 (Clote 1998). For any $n \geq 2$, if M is a model of $I \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.

Problem 2. (a) Does every model of $I \Sigma_{1}$ have a proper Σ_{1}-elementary end extension satisfying $I \Delta_{0}$?
(b) Does every model of $I \Delta_{0}$ have a proper Δ_{0}-elementary end extension satisfying $I \Delta_{0}$?

Fact 1. If $M \subset_{e} K$ (i.e., K is a proper end extension of M) and K satisfies $I \Delta_{0}$, then M is a Δ_{0}-elementary substructure of K.
"Theorem" (Clote 1986). For any $n \geq 2$, if M is a model of $B \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.
Theorem 3 (Clote 1998). For any $n \geq 2$, if M is a model of $I \Sigma_{n}$, then M has a proper Σ_{n}-elementary end extension K satisfying $I \Delta_{0}$.

Problem 2. (a) Does every model of $I \Sigma_{1}$ have a proper Σ_{1}-elementary end extension satisfying $I \Delta_{0}$?
(b) Does every model of $I \Delta_{0}$ have a proper Δ_{0}-elementary end extension satisfying $I \Delta_{0}$?

Fact 1. If $M \subset_{e} K$ (i.e., K is a proper end extension of M) and K satisfies $I \Delta_{0}$, then M is a Δ_{0}-elementary substructure of K.
Problem 3. Does every model of $I \Delta_{0}$ have a proper end extension satisfying $I \Delta_{0}$?

Fact 2. If $M \subset_{e} K$ and K satisfies $I \Delta_{0}$, then M satisfies $B \Sigma_{1}$.
Fact 3. $I \Delta_{0} \nRightarrow B \Sigma_{1}$. (recall Theorem 2(a))

Fact 2. If $M \subset_{e} K$ and K satisfies $I \Delta_{0}$, then M satisfies $B \Sigma_{1}$.
Fact 3. $I \Delta_{0} \nRightarrow B \Sigma_{1}$. (recall Theorem 2(a))
Problem 4. Does every model of $B \Sigma_{1}$ have a proper end extension satisfying $I \Delta_{0}$? (Fundamental problem F in the list of open problems published by Clote \& Krajiček in 1993)

Fact 2. If $M \subset_{e} K$ and K satisfies $I \Delta_{0}$, then M satisfies $B \Sigma_{1}$.
Fact 3. $I \Delta_{0} \nRightarrow B \Sigma_{1}$. (recall Theorem 2(a))
Problem 4. Does every model of $B \Sigma_{1}$ have a proper end extension satisfying $I \Delta_{0}$? (Fundamental problem F in the list of open problems published by Clote \& Krajiček in 1993) Theorem 4 (Wilkie \& Paris 1989). If M is a countable model of $B \Sigma_{1}+\exp$, then there exists K such that $M \subset_{e} K$ and K satisfies $I \Delta_{0}$. (exp expresses "exponentiation is total")

Fact 2. If $M \subset_{e} K$ and K satisfies $I \Delta_{0}$, then M satisfies $B \Sigma_{1}$.
Fact 3. $I \Delta_{0} \nRightarrow B \Sigma_{1}$. (recall Theorem 2(a))
Problem 4. Does every model of $B \Sigma_{1}$ have a proper end extension satisfying $I \Delta_{0}$? (Fundamental problem F in the list of open problems published by Clote \& Krajiček in 1993) Theorem 4 (Wilkie \& Paris 1989). If M is a countable model of $B \Sigma_{1}+\exp$, then there exists K such that $M \subset_{e} K$ and K satisfies $I \Delta_{0}$. (exp expresses "exponentiation is total")

Theorem 5 (Hilbert-Bernays 1939 - ACT). Let M be a model of $P A$ and T be a theory definable in M. If M satisfies $\operatorname{Con}(T)$, then there exists a model K of T such that K is "strongly definable" in M.

Fact 2. If $M \subset_{e} K$ and K satisfies $I \Delta_{0}$, then M satisfies $B \Sigma_{1}$.
Fact 3. $I \Delta_{0} \nRightarrow B \Sigma_{1}$. (recall Theorem 2(a))
Problem 4. Does every model of $B \Sigma_{1}$ have a proper end extension satisfying $I \Delta_{0}$? (Fundamental problem F in the list of open problems published by Clote \& Krajiček in 1993) Theorem 4 (Wilkie \& Paris 1989). If M is a countable model of $B \Sigma_{1}+\exp$, then there exists K such that $M \subset_{e} K$ and K satisfies $I \Delta_{0}$. (exp expresses "exponentiation is total")

Theorem 5 (Hilbert-Bernays 1939 - ACT). Let M be a model of $P A$ and T be a theory definable in M. If M satisfies $\operatorname{Con}(T)$, then there exists a model K of T such that K is "strongly definable" in M.

Lemma 6. If M, K satisfy $P A$ and K is strongly definable in M, then M is isomorphic to an initial segment of K.

Theorem 7 (Enayat \& Wong 2016-7). Every model of $I \Sigma_{1}$ has a proper end extension satisfying $I \Delta_{0}$.

Theorem 7 (Enayat \& Wong 2016-7). Every model of $I \Sigma_{1}$ has a proper end extension satisfying $I \Delta_{0}$.

Remark 1. Theorem 7 gives a positive solution to a variant of Problem 4.

Theorem 7 (Enayat \& Wong 2016-7). Every model of $I \Sigma_{1}$ has a proper end extension satisfying $I \Delta_{0}$.

Remark 1. Theorem 7 gives a positive solution to a variant of Problem 4.
C. Dimitracopoulos and V. Paschalis (2016 \& 2020). Alternative proofs of Theorems 3 and 7, using variants of ACT. The main ideas for the proofs are:

- using induction in the metalanguage, construct a consistent theory T in an extension of $L A$ (in the given model), via a lemma on the possibility of witnessing bounded existential quantifiers with appropriate constants and
- take as universe of the required extension an appropriate set of elements definable in a model of T.

Theorem 8 (Boughattas 1991). Every model of IOpen has a proper end extension to a model of IOpen.

Theorem 8 (Boughattas 1991). Every model of IOpen has a proper end extension to a model of IOpen.
Problem 5. (a) Does every model of $B \Sigma_{1}+\exp$ have a proper end extension satisfying $I \Delta_{0}$?
(b) Does every model of $I \Delta_{1}+\exp$ have a proper end extension satisfying $I \Delta_{0}$? ($I \Delta_{1}$: induction for provably Δ_{1} formulas)

Theorem 8 (Boughattas 1991). Every model of IOpen has a proper end extension to a model of IOpen.
Problem 5. (a) Does every model of $B \Sigma_{1}+\exp$ have a proper end extension satisfying $I \Delta_{0}$?
(b) Does every model of $I \Delta_{1}+\exp$ have a proper end extension satisfying $I \Delta_{0}$? ($I \Delta_{1}$: induction for provably Δ_{1} formulas)
Theorem 9 (Slaman 2004). $B \Sigma_{1}+\exp \Leftrightarrow I \Delta_{1}+\exp$.
(Slaman proved (\Leftarrow), while the converse had been known to hold, even without exp, by a result of R. Gandy)

Theorem 8 (Boughattas 1991). Every model of IOpen has a proper end extension to a model of IOpen.

Problem 5. (a) Does every model of $B \Sigma_{1}+\exp$ have a proper end extension satisfying $I \Delta_{0}$?
(b) Does every model of $I \Delta_{1}+\exp$ have a proper end extension satisfying $I \Delta_{0}$? ($I \Delta_{1}$: induction for provably Δ_{1} formulas)

Theorem 9 (Slaman 2004). $B \Sigma_{1}+\exp \Leftrightarrow I \Delta_{1}+\exp$.
(Slaman proved (\Leftarrow), while the converse had been known to hold, even without exp, by a result of R. Gandy)

Remark 2. A positive solution to Problem 5(b), would (i) combined with Fact 2, imply (\Leftarrow) of Theorem 9
(ii) give a positive solution to Problem 5(a), thus generalizing Theorem 4 (Wilkie \& Paris 1989).

