(short) bounded recursions and Δ_0 -definability

Henri-Alex Esbelin

Clermont Auvergne Université

JAF 42, ΣΑΜΟΣ

An open problem

$\Delta_0^{\mathbb{N}} \subseteq \mathcal{E}_\star^0$

Equality or not?

An open problem in other terms

Let us suppose that

$$\begin{cases} f(\vec{u}, 0) = u_0 \\ f(\vec{u}, i+1) = h(\vec{u}, i, f(i)) \end{cases}$$

and

$$\begin{cases} f(\vec{u}, y) \le Max\{\vec{u}, y\} \\\\ Z = h(\vec{u}, i, z) \text{ is } \Delta_0 - \text{definable} \end{cases}$$

Is $Z = f(\vec{u}, y) \Delta_0$ -definable?

• Basic informations

- Basic informations
- Short bounded recursions : known results

- Basic informations
- Short bounded recursions : known results

Main results and ideas of proofs

- Basic informations
- Short bounded recursions : known results

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

- Main results and ideas of proofs
- Conclusion

x is not prime nor 0 nor 1

$$(\exists u)$$
 $(\exists v)$ $(x = uv) \land (u \neq x) \land (v \neq x)$

x is not prime nor 0 nor 1

$$(\exists u)_{u < x} (\exists v)_{v < x} (x = uv) \land (u \neq x) \land (v \neq x)$$

Exemple

$$z = x^y$$

Exemple

$$z = x^y$$

$y = 2 \land z = x.x$ and $y = 3 \land z = x.x.x$ and ...

Exemple

$$z = x^y$$

$$y = 2 \land z = x.x$$
 and $y = 3 \land z = x.x.x$ and ...

$$f(x,0) = x \qquad f(x,i+1) = f(x) \times x$$

Exemple

$$z = x^y$$

$$y = 2 \land z = x.x$$
 and $y = 3 \land z = x.x.x$ and ...

$$f(x,0) = x \qquad f(x,i+1) = f(x) \times x$$

IS Δ_0 -definable

The graph of the following function

$$\begin{cases} f(0) = 0\\ f(i+1) = (f(i) + 1) \mod 2 & \text{if } i \text{ is prime}\\ f(i+1) = f(i) & \text{if } i \text{ is not prime} \end{cases}$$

IS NOT KNOWN TO BE Δ_0 -definable

The graph of the following function

$$\begin{cases} f(0) = 0\\ f(i+1) = (f(i) + 1) \mod 2 & \text{if } i \text{ is prime}\\ f(i+1) = f(i) & \text{if } i \text{ is not prime} \end{cases}$$

IS NOT KNOWN TO BE Δ_0 -definable

BUT the graph of $f(lh_2(x))$ IS Δ_0 -definable

$$\begin{cases} f(0) = 0\\ f(i+1) = (f(i)+1) \mod 2 & \text{if i is prime}\\ f(i+1) = f(i) & \text{if i is not prime} \end{cases}$$

z = f(y) iff

$$\begin{cases} f(0) = 0 \\ f(i+1) = (f(i) + 1) \mod 2 & \text{if i is prime} \\ f(i+1) = f(i) & \text{if i is not prime} \end{cases}$$

$$z = f(y) \text{ iff}$$

$$\exists (z_0, z_1, ..., z_y) \in \{0, 1\}^{y+1}$$

$$\begin{cases} z_0 = 0 \\ \forall i \le y - 1 \end{cases} \begin{cases} z_{i+1} = (z_i + 1) \mod 2 & \text{if } i \text{ is prime} \\ z_{i+1} = z_i & \text{if } i \text{ is not} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\begin{cases} f(0) = 0 \\ f(i+1) = (f(i)+1) \mod 2 & \text{if i is prime} \\ f(i+1) = f(i) & \text{if i is not prime} \end{cases}$$

$$z = f(y) \text{ iff}$$

$$\exists (z_0, z_1, ..., z_y) \in \{0, 1\}^{y+1} \quad \exists Z \le 2^{y+1}$$

$$\begin{cases} z_0 = 0 \\ \forall i \le y - 1 \\ z = z_y \end{cases} \quad \begin{cases} z_{i+1} = (z_i + 1) \mod 2 & \text{if } i \text{ is prime} \\ z_{i+1} = z_i & \text{if } i \text{ is not} \end{cases}$$

Short recursions, long recursions

$$\begin{cases} \overline{f}(\vec{u},0) = u_0\\ \overline{f}(\vec{u},i+1) = h(\vec{u},i,\overline{f}(\vec{u},i)) \end{cases}$$

long recursionsshort recursions $\bar{f}(\vec{u}, y)$ $f(\vec{u}, y) = \bar{f}(\vec{u}, lh_2(y))$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

transition function		long rec	short rec
$z+1$ if $R(\vec{u}, i)$, else z R is Δ_0		Δ_0^{\sharp}	Δ ₀ [1]
az	<i>a</i> is a variable	Δ ₀ [2]	
$z+b(\vec{u},i)$	$b(ec{u},i) \leq \textit{polyn}(ec{u})$	∆ [‡] [3]	Δ ₀ [4]
	$Graph(b)$ is Δ_0	011	
$a(\vec{u},i) \times z$	$Graph(a)$ is Δ_0	Δ ₀ [5]	
$(a \times z) \mod m$	a, m are variables	Δ ₀ [6]	

Sequences issued from Euclid's algorithm

f(a, b, 0) = a f(a, b, 1) = b

$$f(a, b, i + 2) = f(a, b, i) \mod f(a, b, i + 1)$$

It is essentially a short recursion and the graph of f is Δ_0 -definable [7]

Linear recurrence sequences

$$L(\vec{x}, i+k) = \sum_{j=0}^{k-1} a_j \times L(\vec{x}, i+j)$$

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

(*k* is a constant).

The graph of *L* is Δ_0 -definable [8]

Main results and ideas of proofs

Result I

The short recursion with transition function

$$H(a,c,b,d,x,z,i) = \begin{cases} az+b \text{ if } (x)_i = 1\\ cz+d \text{ if } (x)_i = 0 \end{cases}$$

defines a function with a Δ_0 - definable graph. (\bar{x})_{*i*} the *i*-th binary digit of *x*.

 $ar{x} \in \{0,1\}^{\star}$ is the binary expansion of x

$$\bar{x} = 0^{\alpha(x,0)} 1^{\beta(x,0)} 0^{\alpha(x,1)} \dots 1^{\beta(x,lh_2(x)-2)} 0^{\alpha(x,lh_2(x)-1)} 1^{\beta(x,lh_2(x)-1)}$$

$$L(x,i) = \sum_{j=0}^{j=i-1} \alpha(x,j) + \beta(x,j)$$
$$L_0(x,i) = \sum_{j=0}^{j=i-1} \alpha(x,j) \qquad L_1(x,i) = \sum_{j=0}^{j=i-1} \beta(x,j)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへぐ

$$\begin{split} \bar{F}(a,c,b,d,x,L(i)) &= \\ a^{L_1(x,i)}c^{L_0(x,i)}\bar{F}(a,c,b,d,x,0) \\ &+ \frac{d}{c-1}\left(\sum_{j=0}^{j=i}a^{L_1(x,i)-L_1(x,j)}c^{L_0(x,i)-L_0(x,j+1)}(c^{\alpha(x,j)}-1)\right) \\ &+ \frac{b}{a-1}\left(\sum_{j=0}^{j=i}a^{L_1(x,i)-L_1(x,j)}c^{L_0(x,i)-L_0(x,j)}(a^{\beta(x,j)}-1)\right) \right) \end{split}$$

And similar formulas for

$$L(x,i) \leq y < L(x,i) + \alpha(x,i+1)$$

and

$$L(x,i) + \alpha(i+1) \le y < L(x,i+1)$$

$$z = L(x, i)$$
 is equivalent to
 $(\bar{x})_z = 1 \land (\bar{x})_{z-1} = 0 \land i = card\{j < i; (\bar{x})_i = 1 \land (\bar{x})_{i+1} = 0\}$
with $i \le lh_2(x)$

$$\alpha(\mathbf{x},i) + \beta(\mathbf{x},i) = L(\mathbf{x},i+1) - L(\mathbf{x},i)$$

 $z = \beta(x, i)$ is equivalent to without paying attention to borders ! $\exists u ((u = L(x, i + 1) + 1) \land z = card\{j < u; (\bar{x})_i = 1 \land (\bar{x})_{i-1} = 1\})$

▲□▶▲圖▶▲圖▶▲圖▶ ▲ 圖 - のへで

$$\begin{split} \bar{F}(a,c,b,d,x,L(i)) &= \\ a^{L_1(x,i)}c^{L_0(x,i)}\bar{F}(a,c,b,d,x,0) \\ &+ \frac{d}{c-1}\left(\sum_{j=0}^{j=i}a^{L_1(x,i)-L_1(x,j)}c^{L_0(x,i)-L_0(x,j+1)}(c^{\alpha(x,j)}-1)\right) \\ &+ \frac{b}{a-1}\left(\sum_{j=0}^{j=i}a^{L_1(x,i)-L_1(x,j)}c^{L_0(x,i)-L_0(x,j)}(a^{\beta(x,j)}-1)\right) \right) \end{split}$$

The main step for studying the case where a, b, c, d are variables :

Lemma. the following relation is Δ_0 -definable

$$\left(Z = \sum_{j=0}^{j=i-1} \gamma(x,j)\right) \land (i \leq lh_2(y))$$

where

* $\forall j \leq i (\gamma(x, j) \leq b(x, y))$ * $\log_2(b(x, y))$ is a polylog. of the variables * the graph of γ and *b* are Δ_0 -definable

$$\left(Z = \sum_{j=0}^{j=i-1} \gamma(x,j)\right) \land (i \leq lh_2(y))$$

is equivalent to :

 $(i \le lh_2(y)) \land Z \le b(x, y) \times lh_2(y) \text{ and}$ $\forall p \le 2\log_2(b(x, y) \times lh_2(y)), p \text{ prime}$ $\left(Z \equiv \sum_{j=0}^{j=i-1} \gamma(x, j)\right) \mod p$

now

$$\left(\sum_{j=0}^{j=i-1}\gamma(x,j)\right) \mod p$$

is equal to

$$\left(\sum_{k=0}^{k=p-1} k \times Card\{j \le i-1; \gamma(x,j) \equiv k \bmod p\}\right) \mod p$$

Result II

The short recursion with transition function

$$h_{a_1,a_2}(m_1,m_2,z) = (a_2(a_1z \mod m_1) \mod m_2)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

defines a function with a Δ_0 - definable graph.

$$z = \overline{f}_{a_1,a_2}(m_1, m_2, u, y)$$
 and $0 \le u \le m_2 - 1$

is equivalent to $z \in \{0, 1, ..., m_2 - 1\}^{y+1}$ exists such that

$$(0 \leq z \leq m_2 - 1) \land (0 \leq x \leq m_2 - 1) \land (\mathbf{z}_0 = u \land (\mathbf{z}_y = z))$$

$$orall i \leq y-1 \; \mathbf{z}_{j+1} = h_{a_1,a_2}(m_1,m_2,\mathbf{z}_j)$$

$$z' = h_{a_1,a_2}(m_1,m_2,z)$$
 and $0 \le z \le m_2 - 1$

is equivalent to

 $0 \le z \le m_2 - 1$ and $k_1 \le m_2 - 1$ and $k_2 \le a_2 - 1$ exist such that $\begin{cases}
0 \le z' \le m_2 - 1 \\
z' + k_2 m_2 \le a_2 (m_1 - 1) \\
a_1 a_2 z - z' = a_2 k_1 m_1 + k_2 m_2
\end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$z = \overline{f}_{a_1,a_2}(m_1,m_2,u,y)$$
 and $0 \le x \le m_2 - 1$

is equivalent to

Exist $\mathbf{k_1} \in \{0, 1, ..., m_2 - 1\}^y$ and $\mathbf{k_2} \in \{0, 1, ..., a_2 - 1\}^y$ and $\mathbf{z} \in \{0, 1, ..., m_2 - 1\}^{y+1}$ such that

$$\begin{array}{l} (0 \leq z \leq m_2 - 1) \land (0 \leq x \leq m_2 - 1) \land (\mathbf{z}_0 = u) \land (\mathbf{z}_y = z) \\ \forall i \leq y \\ \left\{ \begin{array}{l} \mathbf{z}_i + S_{\mathbf{k}_2}(i-2)m_2 + a_2S_{\mathbf{k}_1}(i-1)m_1 \leq (a_1a_2)^i(m_1 - 1) \\ \mathbf{z}_i + S_{\mathbf{k}_2}(i-1)m_2 + a_2S_{\mathbf{k}_1}(i-1)m_1 = (a_1a_2)^i x \end{array} \right. \end{array}$$
where $S_{\mathbf{k}}(i) = \sum_{j=0}^{j=i} \mathbf{k}_{i-j}(a_1a_2)^j$

Exist $\mathbf{k_1} \in \{0, 1, ..., m_2 - 1\}^y$ and $\exists K_2 \leq x_0^{\gamma}$ and $\mathbf{z} \in \{0, 1, ..., m_2 - 1\}^{y+1}$ such that

$$(0 \le z \le m_2 - 1) \land (0 \le x \le m_2 - 1) \land (\mathbf{z}_0 = u) \land (\mathbf{z}_y = z)$$

$$\forall i \le y$$

$$\int \mathbf{z}_i + S_{\mathbf{k}_2}(i - 2)m_2 + a_2 S_{\mathbf{k}_1}(i - 1)m_1 \le (a_1 a_2)^i (m_1 - 1)$$

$$z_i + S_{k_2}(i-1)m_2 + a_2S_{k_1}(i-1)m_1 = (a_1a_2)^i x$$

where $S_{\mathbf{k}}(i) = \sum_{j=0}^{j=i} \mathbf{k}_{i-j} (a_1 a_2)^j$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An easy remark :

If $m_2 \ge 1 + a_2(m_1 - 1)$ then

$$h_{a_1,a_2}(m_1,m_2,z) = a_2(a_1z \mod m_1)$$

 Δ_0 -definability from Hesse theorem, even for

$$h(a_1, a_2, m, z) = a_1 (a_2 z \mod m)$$

Exist $\mathbf{k_1} \in \{0, 1, ..., m_2 - 1\}^y$ and $\exists K_2 \leq x_0^{\gamma}$ and $\mathbf{z} \in \{0, 1, ..., m_2 - 1\}^{y+1}$ such that

$$(0 \le z \le m_2 - 1) \land (0 \le x \le m_2 - 1) \land (\mathbf{z}_0 = u) \land (\mathbf{z}_y = z)$$

$$\forall i \le y$$

$$(\mathbf{z}_i + S_{\mathbf{k}_2}(i - 2)m_2 + a_2 S_{\mathbf{k}_1}(i - 1)m_1 \le (a_1 a_2)^i (m_1 - 1)$$

$$z_i + S_{k_2}(i-1)m_2 + a_2S_{k_1}(i-1)m_1 = (a_1a_2)^i x_1$$

where $S_{\mathbf{k}}(i) = \sum_{j=0}^{j=i} \mathbf{k_{2}}_{i-j} (a_1 a_2)^j$

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ● ● ●

$$(0 \le z \le m_2 - 1) \land$$

$$\forall i \le y$$

$$\begin{cases} \mathbf{z}_i + a_2 S_{\mathbf{k}_1}(i-1)m_1 = (a_1 a_2)^i x - S_{\mathbf{k}_2}(i-1)m_2 \end{cases}$$

with $m_2 \le a_2(m_1 - 1)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\exists K_{2} \leq x_{0}^{\gamma}$$

$$(0 \leq z \leq m_{2} - 1) \land (0 \leq x \leq m_{2} - 1)$$

$$\forall i \leq y \quad \exists \zeta \leq m_{2} - 1 \exists \chi \leq (m_{2} - 1) \frac{(a_{1}a_{2})^{i+1} - 1}{a_{1}a_{2} - 1}$$

$$\begin{cases} \zeta + \chi m_{2} + a_{2}S_{k_{2}}(i - 1)m_{1} \leq (a_{1}a_{2})^{i}(m_{1} - 1) \\ \zeta + \chi m_{2} + a_{2}S_{k_{2}}(i - 1)m_{1} = (a_{1}a_{2})^{i}x \end{cases}$$
where $S_{k_{2}}(i) = \sum_{j=0}^{j=i} k_{2i-j}(a_{1}a_{2})^{j} = \left\lfloor \frac{K}{(a_{1}a_{2})^{i+1}} \right\rfloor$
and $\zeta = ((a_{1}a_{2})^{i}x - m_{2}S_{k_{2}}(i - 1)) \mod (a_{2}m_{1})$
and $\chi = \left\lfloor \frac{(a_{1}a_{2})^{i}x - m_{2}S_{k_{2}}(i - 1)}{a_{2}m_{1}} \right\rfloor$

990

Consequence 1. The short recursion for transition function

$$h_{R,(a,c),(b,d)}(\vec{u},z,i) = \begin{cases} az+b \text{ if } R(\vec{u},i,z) \\ cz+d \text{ if } \neg R(\vec{u},i,z) \end{cases}$$

The idea is that if we define a relation R' as

$$R'(\vec{u},i) \text{ iff } R(\vec{u},i,\bar{F}_{R,(a,c),(b,d)}(\vec{u},i))$$

then for all $0 \le i \le y$, we have

$$\bar{F}_{R,(a,c),(b,d)}(\vec{u},i) = \bar{f}_{Id,R',(a,c),(b,d)}(\vec{u},i)$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへ⊙

$$egin{aligned} &z=ar{F}_{R,i,(a,c),(b,d)}(ec{u},\mathit{lh}_2(y)) ext{ is equivalent to} \ &\exists m\in\{0,1\}^{\mathit{lh}_2(y)}\left(orall i_{i\leq \mathit{lh}_2(y)}\left[R'(ec{u},i,ar{f}_{\mathit{ld},R_m,(a,c),(b,d)}(ec{u},i))\leftrightarrow m_i=1
ight] \ &\wedge\left[z=ar{f}_{R_m,(a,c),(b,d)}(ec{u},y)
ight] \ & ext{where } R_m(i) ext{ is define by } m_i=1. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Variant. The long recursion for transition function

$$h_R(a,c,b,d,\vec{u},z,i) = \begin{cases} az+b \text{ if } R(\vec{u},i,z) \\ cz+d \text{ if } \neg R(\vec{u},i,z) \end{cases}$$

Consequence. The short recursion for transition function

$$h_{R,(a,c),(b,d)}(\vec{u}, i, z) = \begin{cases} a(\vec{u})z + b(\vec{u}) \text{ if } R(\vec{u}, i, z) \\ c((\vec{u})z + d((\vec{u}) \text{ if } \neg R(\vec{u}, i, z)) \end{cases}$$

Generalization (work in progress) The short recursion for transition function

$$egin{aligned} h_{(R_1,R_2,...,R_k),(a_1,c_1),(a_2,c_2),...,(a_k,c_k)}(ec{u}, i,z) = \ & \left\{ egin{aligned} a_1(ec{u})z + b_1(ec{u}) & ext{if } R_1(ec{u},i,z) \ ... \ a_k(ec{u})z + b_k(ec{u}) & ext{if } R_k(ec{u},i,z) \end{aligned}
ight. \end{aligned}$$

Generalization of the second result. The short recursion for transition function

$$h_{a_1,b_1,a_2,b_2}(m_1,m_2,z) = (a_2((a_1x+b_1) \mod m_1) + b_2) \mod m_2$$

References I

[1] and [4]) A. Woods, *Some problems in logic and number theory and their connections*, Ph.D. thesis, University of Manchester, Manchester, 1981, in *Studies in Weak Arithmetics, Vol. 2*, ed. Edited by P. Cégielski, Ch. Cornaros, and C. Dimitracopoulos, CSLI Lecture Notes (211), 2013.

[2] J. Bennett, *On spectra*, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 1962, and H. Gaifman and C. Dimitracopoulos. *Fragments of Peano's arithmetic and the MRDP Theorem*, in Logic and Algorithmic, Geneve, pp. 187-206, 1982.

[3] H.-A. E. and M. More, *Rudimentary relations and primitive recursion : a toolbox*, T. C. S., vol. 193, n. 1-2, pp. 129-148, 1998.

References II

[5] A. Berarducci & P. D'Aquino, Δ_0 -complexity of the relation $y = \prod_{i \leq n} F$, APAL 75 (1-2) :49-56, 1995.

[6] W. Hesse, E. Allender, D.A.M. Barrington, *Uniform constant-depth threshold circuits for division and iterated multiplication*, J. Comput. Syst. Sci. 65, pp. 695-716, 2002.

[7] H.-A. E. Δ_0 -definability of the denumerant with one plus three variables, in Studies in Weak Arithmetics, ... (opt. cit.)

[8] H.-A. E. & M. More, (opt. cit.) and independently A. Berarducci & B. Intrigila *Linear Recurrence Relations are* Δ_0 *Definable* in *Logic and Foundations of Mathematics Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, 1995*, 1999.