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Motivation: two areas

Mathematical logic: theories of arithmetic

Computer science: automated inductive theorem proving

Find proof by induction automatically
History in computer science dating back to the 1970ies

Difference to first-order theorem proving (validity):
No cut-elimination theorem

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Typical problems:
∀x∀y x + y = y + x
∀l len(rev(l)) = len(l)

Empirical evaluation of implementations
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Motivation: building a connection

M

T σ

Use mathematical logic in order to:
1. classify strength of methods
2. obtain independence results

Straightforward results,
e.g., T = PA, σ = ConPA

Practically meaningful
independence results

▶ Weak arithmetical theories
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Specifics of this setting

Often: M and T parametric in language / basic axioms

Coding does not play a role

Not only numbers, also: lists, trees, etc.

Bounded quantifiers are not distinguished

Sometimes: idiosyncracies of method M reflected in T
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Outline

1 Introduction

2 Induction on literals

3 Open Induction

4 Existential Induction

5 Conclusion
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Induction on Literals

Definition. A literal is an atom or a negated atom.

Definition. The induction axiom Ixφ(x , z) is

φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z).

Definition. For a set of formulas Γ define

Γ-IND = {Ixφ(x , z) | φ(x , z) ∈ Γ}

In particular: Literal-IND

Observation. For natural axioms A in language L = {0, s, p,+}:

A+ Literal-IND ≡ A+Open-IND.
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Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition. Clause is a formula
∨n

i=1 Li where Li literal.

Definition. Saturation system S is a set of rules.

Example. The resolution rule is

C ∨ L L′ ∨ D
(C ∨ D)σ

where σ is most general unifier of L and L′.

Definition. Clause set C closed under S if for all n-ary rules ρ ∈ S:
C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition. S sound if C ∈ Cω implies C |= C

Definition. S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω
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Adding explicit induction axioms

Adding induction:

CNF(sk∃(Ixφ(x)))

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, L(a) variable-free

Example. S + SCIND refutes

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c}
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Characterisation and independence result

Theorem. S sound saturation system, T ∃2 theory. If S + SCIND
refutes CNF(sk∃(T )) then T + Literal-IND is inconsistent.

Definition.

Let T = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)),¬E (c) ∧ ¬O(c)}.

Theorem. T + Literal-IND is consistent.

Corollary. If S sound saturation system, then S + SCIND does not
refute T .
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Open induction

Theorem. [Shoenfield ’58] Over

s(x) ̸= 0 x + 0 = x

p(0) = 0 x + s(y) = s(x + y)

p(s(x)) = x

open induction is equivalent to

x + y = y + x x = 0 ∨ x = s(p(x))

(x + y) + z = x + (y + z) x + y = x + z → y = z

Shepherdson ’60ies: systematic study
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Open induction for lists

Definition. Let L = {nil, cons,⌢}, let T =

nil ̸= cons(x ,X )

cons(x ,X ) = cons(y ,Y ) → x = y ∧ X = Y

nil ⌢ Y = Y

cons(x ,X ) ⌢ Y = cons(x ,X ⌢ Y )

Theorem. [H, Vierling]

T + Open-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z .
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Open Questions

Project. Systematic picture of subsystems of open induction

atomic, literal, clause, dual clause, open induction
for numbers (in various signatures)
for lists, trees, . . .
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Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition. An L ∪ {η} clause set C is a clause set cycle (CSC) if
C(s(η)) |= C(η) and C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted
by a CSC C(η) if D(η) |= C(η).

Variants

Example. CSC refutes Even/Odd example

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 15 / 21



Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition. An L ∪ {η} clause set C is a clause set cycle (CSC) if
C(s(η)) |= C(η) and C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted
by a CSC C(η) if D(η) |= C(η).

Variants

Example. CSC refutes Even/Odd example

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 15 / 21



Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition. An L ∪ {η} clause set C is a clause set cycle (CSC) if
C(s(η)) |= C(η) and C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted
by a CSC C(η) if D(η) |= C(η).

Variants

Example. CSC refutes Even/Odd example

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 15 / 21



Logical characterisation

Definition. Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition. T theory, R inference rule, define

[T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem. D is refuted by a CSC iff D + [∅,∃1-INDR−
η ] ⊢ ⊥.
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Independence result

Definition. LLA = {0, s, p,+}
T = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,

x + 0 = x , x + s(y) = s(x + y),
x + y = y + x , x + (y + z) = (x + y) + z }

Definition. Let k , n,m ∈ N with 0 < n < m, define Ek,n,m as:

n · x + (m − n)k = m · x → x = k

Example. x + 0 = x + x → x = 0 (E0,1,2)

Theorem. T + ∃1-IND− ̸⊢ Ek,n,m

Corollary. Ek,n,m(η) is not refuted by an LLA clause set cycle.
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Independence result: proof

Theorem

T + ∃1-IND− ̸⊢ Ek,n,m

Proof.

Countermodel M, domain {(i , n) ∈ N× Z | i = 0 implies n ∈ N}

0M = (0, 0) pM((0, n)) = (0, n .− 1)

sM(i , n) = (i , n + 1) pM((i , n)) = (i , n − 1) if i > 0

(i , n) +M (j ,m) = (max(i , j), n +m)
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Independence result: proof

Theorem

T + ∃1-IND− ̸⊢ Ek,n,m

Proof.

Countermodel M, domain {(i , n) ∈ N× Z | i = 0 implies n ∈ N}

0M = (0, 0) pM((0, n)) = (0, n .− 1)
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Open Questions

Iterations of CSCs ... nested applications of ∃1-INDR−
η

Theorem. For every k ∈ N there is a clause set Ck which is refuted
by [∅, ∃1-INDR−]k+1 but not by [∅,∃1-INDR−]k
Proof Sketch. Totality of a suitable function fk .

Question. Is T + ∃1-IND− ∀2-conservative over T + ∃1-INDR− ?

Definition. Let T0 = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,
x + 0 = x , x + s(y) = s(x + y)}.

Conjecture. T0 + ∃1-IND− ̸⊢ x + (x + x) = (x + x) + x .
( Note that T0 + Literal-IND ⊢ x + (x + x) = (x + x) + x . )
( Would yield corollary on CSCs )
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Conclusion and future work

Strategy for analysing method M:

Find upper bound T for strength of M
Independence result for T

▶ Logical foundations of automated inductive theorem proving

▶ Clarify relationship between methods, challenge problems
▶ New questions / problems about (weak) arithemtical theories

Future Work:

Analyse further methods: term rewriting, theory exploration, . . .

Towards a systematic picture: which method solves which problem?

(Weak) theories of inductive datatypes: lists, trees, etc.

Analyticity
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Finish

Thank you!

Stefan Hetzl and Jannik Vierling.
Unprovability results for clause set cycles.
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