Arithmetical theories and the automation of induction

Stefan Hetzl Jannik Vierling

Institute of Discrete Mathematics and Geometry TU Wien, Austria

42ème Journées sur les Arithmétiques Faibles Karlovassi, Greece September 25, 2023

- Mathematical logic: theories of arithmetic
- Computer science: automated inductive theorem proving

- Mathematical logic: theories of arithmetic
- Computer science: automated inductive theorem proving
 - Find proof by induction automatically History in computer science dating back to the 1970ies

- Mathematical logic: theories of arithmetic
- Computer science: automated inductive theorem proving
 - Find proof by induction automatically History in computer science dating back to the 1970ies
 - Difference to first-order theorem proving (validity): No cut-elimination theorem

- Mathematical logic: theories of arithmetic
- Computer science: automated inductive theorem proving
 - Find proof by induction automatically History in computer science dating back to the 1970ies
 - Difference to first-order theorem proving (validity): No cut-elimination theorem
 - Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, ...

- Mathematical logic: theories of arithmetic
- Computer science: automated inductive theorem proving
 - Find proof by induction automatically History in computer science dating back to the 1970ies
 - Difference to first-order theorem proving (validity): No cut-elimination theorem
 - Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, ...
 - Typical problems: $\forall x \forall y \ x + y = y + x$ $\forall l \text{ len}(\text{rev}(l)) = \text{len}(l)$

- Mathematical logic: theories of arithmetic
- Computer science: automated inductive theorem proving
 - Find proof by induction automatically History in computer science dating back to the 1970ies
 - Difference to first-order theorem proving (validity): No cut-elimination theorem
 - Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, ...
 - Typical problems: $\forall x \forall y \ x + y = y + x$ $\forall l \ len(rev(l)) = len(l)$
 - Empirical evaluation of implementations

- Use mathematical logic in order to:
 - 1. classify strength of methods
 - 2. obtain independence results

- Use mathematical logic in order to:
 - 1. classify strength of methods
 - 2. obtain independence results

- Use mathematical logic in order to:
 - $1. \ {\rm classify \ strength \ of \ methods}$
 - 2. obtain independence results

- Use mathematical logic in order to:
 - $1. \ {\rm classify \ strength \ of \ methods}$
 - 2. obtain independence results

- Use mathematical logic in order to:
 - $1. \ {\rm classify \ strength \ of \ methods}$
 - 2. obtain independence results

Straightforward results,
 e.g., T = PA, σ = Con_{PA}

- Use mathematical logic in order to:
 - 1. classify strength of methods
 - 2. obtain independence results

- Straightforward results,
 e.g., T = PA, σ = Con_{PA}
- **Practically meaningful** independence results

- Use mathematical logic in order to:
 - 1. classify strength of methods
 - 2. obtain independence results

- Straightforward results,
 e.g., T = PA, σ = Con_{PA}
- Practically meaningful independence results
- Weak arithmetical theories

• Often: M and T parametric in language / basic axioms

- Often: M and T parametric in language / basic axioms
- Coding does not play a role

- Often: M and T parametric in language / basic axioms
- Coding does not play a role
- Not only numbers, also: lists, trees, etc.

- Often: M and T parametric in language / basic axioms
- Coding does not play a role
- Not only numbers, also: lists, trees, etc.
- Bounded quantifiers are not distinguished

- Often: *M* and *T* parametric in language / basic axioms
- Coding does not play a role
- Not only numbers, also: lists, trees, etc.
- Bounded quantifiers are not distinguished
- Sometimes: idiosyncracies of method M reflected in T

Introduction

2 Induction on literals

3 Open Induction

4 Existential Induction

5 Conclusion

• Definition. A literal is an atom or a negated atom.

Induction on Literals

- Definition. A literal is an atom or a negated atom.
- **Definition.** The induction axiom $I_x \varphi(x, \overline{z})$ is

$$\varphi(0,\overline{z}) \wedge \forall x \left(\varphi(x,\overline{z}) \rightarrow \varphi(s(x),\overline{z}) \right) \rightarrow \forall x \varphi(x,\overline{z}).$$

• **Definition.** For a set of formulas Γ define

$$\mathsf{\Gamma}\mathsf{-}\mathsf{IND} = \{I_x\varphi(x,\overline{z}) \mid \varphi(x,\overline{z}) \in \mathsf{\Gamma}\}\$$

• In particular: Literal-IND

Induction on Literals

- Definition. A literal is an atom or a negated atom.
- **Definition.** The induction axiom $I_X \varphi(x, \overline{z})$ is

$$\varphi(0,\overline{z}) \land \forall x (\varphi(x,\overline{z}) \to \varphi(s(x),\overline{z})) \to \forall x \varphi(x,\overline{z}).$$

• **Definition.** For a set of formulas Γ define

$$\Gamma\text{-}\mathsf{IND} = \{I_x\varphi(x,\overline{z}) \mid \varphi(x,\overline{z}) \in \Gamma\}$$

- In particular: Literal-IND
- **Observation.** For natural axioms A in language $L = \{0, s, p, +\}$:

$$A + \text{Literal-IND} \equiv A + \text{Open-IND}.$$

• Standard technique for automated theorem proving in FOL

- Standard technique for automated theorem proving in FOL
- **Definition.** Clause is a formula $\bigvee_{i=1}^{n} L_i$ where L_i literal.

- Standard technique for automated theorem proving in FOL
- **Definition.** Clause is a formula $\bigvee_{i=1}^{n} L_i$ where L_i literal.
- **Definition.** Saturation system S is a set of rules.
- Example. The *resolution rule* is

$$\frac{C \lor L \quad L' \lor D}{(C \lor D)\sigma}$$

where σ is most general unifier of L and $\overline{L'}$.

- Standard technique for automated theorem proving in FOL
- **Definition.** Clause is a formula $\bigvee_{i=1}^{n} L_i$ where L_i literal.
- **Definition.** Saturation system S is a set of rules.
- Example. The resolution rule is

$$\frac{C \lor L \quad L' \lor D}{(C \lor D)\sigma}$$

where σ is most general unifier of L and $\overline{L'}$.

Definition. Clause set C closed under S if for all n-ary rules ρ ∈ S:
 C₁,..., C_n ∈ C implies ρ(C₁,..., C_n) ∈ C
 Given C, compute closure by C⁰ = C, C¹, C²,... → C^ω.

- Standard technique for automated theorem proving in FOL
- **Definition.** Clause is a formula $\bigvee_{i=1}^{n} L_i$ where L_i literal.
- **Definition.** Saturation system S is a set of rules.
- Example. The *resolution rule* is

$$\frac{C \lor L \quad L' \lor D}{(C \lor D)\sigma}$$

where σ is most general unifier of L and $\overline{L'}$.

• **Definition.** Clause set C closed under S if for all *n*-ary rules $\rho \in S$: $C_1, \ldots, C_n \in C$ implies $\rho(C_1, \ldots, C_n) \in C$

Given \mathcal{C} , compute closure by $\mathcal{C}^0 = \mathcal{C}, \mathcal{C}^1, \mathcal{C}^2, \ldots \longrightarrow \mathcal{C}^{\omega}$.

- **Definition.** S sound if $C \in C^{\omega}$ implies $C \models C$
- **Definition.** S refutationally complete if $C \models \bot$ implies $\bot \in C^{\omega}$

Adding explicit induction axioms

• Adding induction:

$$CNF(sk^{\exists}(I_x\varphi(x)))$$

Adding explicit induction axioms

• Adding induction:

$$\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x\varphi(x)))$$

• Vampire prover [Voronkov et al. '20]: single clause induction

$$\frac{\overline{L(a)} \lor C}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x L(x)))} \mathsf{SCIND}$$

a constant symbol, L(x) literal, L(a) variable-free

Adding explicit induction axioms

• Adding induction:

$$\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x\varphi(x)))$$

• Vampire prover [Voronkov et al. '20]: single clause induction

$$\frac{\overline{L(a)} \lor C}{\mathsf{CNF}(\mathsf{sk}^\exists (I_x L(x)))} \mathsf{SCIND}$$

- a constant symbol, L(x) literal, L(a) variable-free
- **Example.** S + SCIND refutes

$$\{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) \neq (c + c) + c\}$$

Characterisation and independence result

• **Theorem.** S sound saturation system, $T \exists_2$ theory. If S + SCIND refutes $CNF(sk^{\exists}(T))$ then T + Literal-IND is inconsistent.

Characterisation and independence result

• **Theorem.** S sound saturation system, $T \exists_2$ theory. If S + SCIND refutes $CNF(sk^{\exists}(T))$ then T + Literal-IND is inconsistent.

Definition.

Let
$$T = \{ 0 \neq s(x), s(x) = s(y) \rightarrow x = y,$$

 $E(0), E(x) \rightarrow O(s(x)), O(x) \rightarrow E(s(x)), \neg E(c) \land \neg O(c) \}.$

• **Theorem.** *T* + Literal-IND is consistent.

Characterisation and independence result

- **Theorem.** S sound saturation system, $T \exists_2$ theory. If S + SCIND refutes $CNF(sk^{\exists}(T))$ then T + Literal-IND is inconsistent.
- Definition.

Let
$$T = \{ 0 \neq s(x), s(x) = s(y) \rightarrow x = y,$$

 $E(0), E(x) \rightarrow O(s(x)), O(x) \rightarrow E(s(x)), \neg E(c) \land \neg O(c) \}.$

- **Theorem.** *T* + Literal-IND is consistent.
- **Corollary.** If S sound saturation system, then S + SCIND does not refute T.

1 Introduction

2 Induction on literals

Open Induction

4 Existential Induction

5 Conclusion

• Theorem. [Shoenfield '58] Over

$$s(x) \neq 0 \qquad x + 0 = x$$

$$p(0) = 0 \qquad x + s(y) = s(x + y)$$

$$p(s(x)) = x$$

open induction is equivalent to

$$x + y = y + x \qquad \qquad x = 0 \lor x = s(p(x))$$
$$(x + y) + z = x + (y + z) \qquad \qquad x + y = x + z \to y = z$$

• Shepherdson '60ies: systematic study

Open induction for lists

• **Definition.** Let $L = \{ nil, cons, \frown \}$, let $T = \{ ni, cons, \frown \}$, let $T = \{ ni,$

$$\operatorname{nil} \neq \operatorname{cons}(x, X)$$
$$\operatorname{cons}(x, X) = \operatorname{cons}(y, Y) \rightarrow x = y \land X = Y$$
$$\operatorname{nil} \frown Y = Y$$
$$\operatorname{cons}(x, X) \frown Y = \operatorname{cons}(x, X \frown Y)$$

• **Definition.** Let $L = {nil, cons, \frown}$, let T =

$$\begin{aligned} \mathsf{nil} \neq \mathsf{cons}(x, X) \\ \mathsf{cons}(x, X) &= \mathsf{cons}(y, Y) \rightarrow x = y \land X = Y \\ \mathsf{nil} \frown Y = Y \\ \mathsf{cons}(x, X) \frown Y &= \mathsf{cons}(x, X \frown Y) \end{aligned}$$

• Theorem. [H, Vierling]

$$T + \textit{Open-IND} \not\vdash Y \frown X = Z \frown X \rightarrow Y = Z.$$

• Project. Systematic picture of subsystems of open induction

- atomic, literal, clause, dual clause, open induction
- for numbers (in various signatures)
- for lists, trees, ...

Introduction

2 Induction on literals

3 Open Induction

4 Existential Induction

5 Conclusion

• Abstraction of n-clause calculus [Kersani, Peltier '13; Kersani '14]

- Abstraction of n-clause calculus [Kersani, Peltier '13; Kersani '14]
- Definition. An L ∪ {η} clause set C is a clause set cycle (CSC) if C(s(η)) ⊨ C(η) and C(0) ⊨ ⊥. An L ∪ {η} clause set D(η) is refuted by a CSC C(η) if D(η) ⊨ C(η).

Variants

- Abstraction of n-clause calculus [Kersani, Peltier '13; Kersani '14]
- Definition. An L ∪ {η} clause set C is a clause set cycle (CSC) if C(s(η)) ⊨ C(η) and C(0) ⊨ ⊥. An L ∪ {η} clause set D(η) is refuted by a CSC C(η) if D(η) ⊨ C(η).
- Variants
- Example. CSC refutes Even/Odd example

• Definition. Γ set of formulas, define

$$\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \ \Gamma\text{-}\mathsf{IND}_{\eta}^{\mathsf{R}-}$$

where $\varphi(x) \in \Gamma$.

• Definition. Γ set of formulas, define

$$\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \ \Gamma\text{-}\mathsf{IND}_{\eta}^{\mathsf{R}-}$$

where $\varphi(x) \in \Gamma$.

• Definition. T theory, R inference rule, define

 $[T,R] = T + \{\varphi \mid T \vdash \Gamma, \Gamma/\varphi \in R\}.$

• Definition. Γ set of formulas, define

$$\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \ \Gamma\text{-}\mathsf{IND}_{\eta}^{\mathsf{R}-}$$

where $\varphi(x) \in \Gamma$.

• Definition. T theory, R inference rule, define

$$[T, R] = T + \{ \varphi \mid T \vdash \Gamma, \Gamma / \varphi \in R \}.$$

• **Theorem.** \mathcal{D} is refuted by a CSC iff $\mathcal{D} + [\emptyset, \exists_1 \text{-} \mathsf{IND}_n^{\mathsf{R}-}] \vdash \bot$.

• Definition.
$$L_{LA} = \{0, s, p, +\}$$

 $T = \{ s(0) \neq 0, p(0) = 0, p(s(x)) = x,$
 $x + 0 = x, x + s(y) = s(x + y),$
 $x + y = y + x, x + (y + z) = (x + y) + z \}$

• Definition.
$$L_{LA} = \{0, s, p, +\}$$

 $T = \{ s(0) \neq 0, p(0) = 0, p(s(x)) = x,$
 $x + 0 = x, x + s(y) = s(x + y),$
 $x + y = y + x, x + (y + z) = (x + y) + z \}$

• **Definition.** Let $k, n, m \in \mathbb{N}$ with 0 < n < m, define $E_{k,n,m}$ as:

$$n \cdot x + \overline{(m-n)k} = m \cdot x \to x = \overline{k}$$

• Definition.
$$L_{LA} = \{0, s, p, +\}$$

 $T = \{ s(0) \neq 0, p(0) = 0, p(s(x)) = x,$
 $x + 0 = x, x + s(y) = s(x + y),$
 $x + y = y + x, x + (y + z) = (x + y) + z \}$

• **Definition.** Let $k, n, m \in \mathbb{N}$ with 0 < n < m, define $E_{k,n,m}$ as:

$$n \cdot x + \overline{(m-n)k} = m \cdot x \to x = \overline{k}$$

• Example. $x + 0 = x + x \rightarrow x = 0$ (*E*_{0,1,2})

• Definition.
$$L_{LA} = \{0, s, p, +\}$$

 $T = \{ s(0) \neq 0, p(0) = 0, p(s(x)) = x,$
 $x + 0 = x, x + s(y) = s(x + y),$
 $x + y = y + x, x + (y + z) = (x + y) + z \}$

• **Definition.** Let $k, n, m \in \mathbb{N}$ with 0 < n < m, define $E_{k,n,m}$ as:

$$n \cdot x + \overline{(m-n)k} = m \cdot x \to x = \overline{k}$$

- Example. $x + 0 = x + x \rightarrow x = 0$ (*E*_{0,1,2})
- Theorem. $T + \exists_1 \text{-}\mathsf{IND}^- \not\vdash E_{k,n,m}$
- Corollary. $\mathcal{E}_{k,n,m}(\eta)$ is not refuted by an L_{LA} clause set cycle.

Theorem

$$T + \exists_1 \text{-}\mathsf{IND}^- \not\vdash E_{k,n,m}$$

Theorem

$$T + \exists_1 \text{-}\mathsf{IND}^- \not\vdash E_{k,n,m}$$

Proof.

Countermodel \mathcal{M} , domain $\{(i, n) \in \mathbb{N} \times \mathbb{Z} \mid i = 0 \text{ implies } n \in \mathbb{N}\}$

$$0^{\mathcal{M}} = (0,0) \qquad p^{\mathcal{M}}((0,n)) = (0, n \div 1)$$

$$s^{\mathcal{M}}(i,n) = (i, n+1) \qquad p^{\mathcal{M}}((i,n)) = (i, n-1) \text{ if } i > 0$$

$$(i,n) +^{\mathcal{M}}(j,m) = (\max(i,j), n+m)$$

- Iterations of CSCs ... nested applications of \exists_1 -IND $_n^{\mathsf{R}-}$
- Theorem. For every k ∈ N there is a clause set C_k which is refuted by [Ø, ∃₁-IND^{R−}]_{k+1} but not by [Ø, ∃₁-IND^{R−}]_k
 Proof Sketch. Totality of a suitable function f_k.

- Iterations of CSCs ... nested applications of \exists_1 -IND $_n^{R-}$
- Theorem. For every k ∈ N there is a clause set C_k which is refuted by [Ø, ∃₁-IND^{R−}]_{k+1} but not by [Ø, ∃₁-IND^{R−}]_k
 Proof Sketch. Totality of a suitable function f_k.
- Question. Is $T + \exists_1 \text{-}\mathsf{IND}^- \forall_2 \text{-}\mathsf{conservative over } T + \exists_1 \text{-}\mathsf{IND}^{\mathsf{R}-}$?

- \bullet Iterations of CSCs ... nested applications of $\exists_1\text{-}\mathsf{IND}_\eta^{\mathsf{R}-}$
- Theorem. For every k ∈ N there is a clause set C_k which is refuted by [Ø, ∃₁-IND^{R−}]_{k+1} but not by [Ø, ∃₁-IND^{R−}]_k
 Proof Sketch. Totality of a suitable function f_k.
- Question. Is $T + \exists_1 \text{-}\mathsf{IND}^- \forall_2 \text{-}\mathsf{conservative over } T + \exists_1 \text{-}\mathsf{IND}^{\mathsf{R}-}$?

• Definition. Let
$$T_0 = \{ s(0) \neq 0, p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y) \}.$$

• Conjecture. $T_0 + \exists_1 \text{-} \text{IND}^- \not\vdash x + (x + x) = (x + x) + x$.

- \bullet Iterations of CSCs ... nested applications of $\exists_1\text{-}\mathsf{IND}_\eta^{\mathsf{R}-}$
- Theorem. For every k ∈ N there is a clause set C_k which is refuted by [Ø, ∃₁-IND^{R−}]_{k+1} but not by [Ø, ∃₁-IND^{R−}]_k Proof Sketch. Totality of a suitable function f_k.
- Question. Is $T + \exists_1 \text{-}\mathsf{IND}^- \forall_2 \text{-}\mathsf{conservative over } T + \exists_1 \text{-}\mathsf{IND}^{\mathsf{R}-}$?

• Definition. Let
$$T_0 = \{ s(0) \neq 0, p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y) \}.$$

• Conjecture. $T_0 + \exists_1 \text{-} \text{IND}^- \forall x + (x + x) = (x + x) + x.$ (Note that $T_0 + \text{Literal-IND} \vdash x + (x + x) = (x + x) + x.$) (Would yield corollary on CSCs)

- Strategy for analysing method *M*:
 - Find upper bound T for strength of M
 - Independence result for T

- Strategy for analysing method *M*:
 - Find upper bound T for strength of M
 - Independence result for T
- Logical foundations of automated inductive theorem proving
 - Clarify relationship between methods, challenge problems
 - New questions / problems about (weak) arithemtical theories

- Strategy for analysing method *M*:
 - Find upper bound T for strength of M
 - Independence result for T
- Logical foundations of automated inductive theorem proving
 - Clarify relationship between methods, challenge problems
 - ▶ New questions / problems about (weak) arithemtical theories

Future Work:

• Analyse further methods: term rewriting, theory exploration, ...

- Strategy for analysing method *M*:
 - Find upper bound T for strength of M
 - Independence result for T
- Logical foundations of automated inductive theorem proving
 - Clarify relationship between methods, challenge problems
 - New questions / problems about (weak) arithemtical theories

Future Work:

- Analyse further methods: term rewriting, theory exploration, ...
- Towards a systematic picture: which method solves which problem?

- Strategy for analysing method *M*:
 - Find upper bound T for strength of M
 - Independence result for T
- Logical foundations of automated inductive theorem proving
 - Clarify relationship between methods, challenge problems
 - New questions / problems about (weak) arithemtical theories

Future Work:

- Analyse further methods: term rewriting, theory exploration, ...
- Towards a systematic picture: which method solves which problem?
- (Weak) theories of inductive datatypes: lists, trees, etc.

- Strategy for analysing method *M*:
 - Find upper bound T for strength of M
 - Independence result for T
- Logical foundations of automated inductive theorem proving
 - Clarify relationship between methods, challenge problems
 - New questions / problems about (weak) arithemtical theories

Future Work:

- Analyse further methods: term rewriting, theory exploration, ...
- Towards a systematic picture: which method solves which problem?
- (Weak) theories of inductive datatypes: lists, trees, etc.
- Analyticity

Thank you!

- Stefan Hetzl and Jannik Vierling.
 Unprovability results for clause set cycles.
 Theoretical Computer Science, 935, 21–46, 2022.
- Stefan Hetzl and Jannik Vierling. Induction and Skolemization in saturation theorem proving. Annals of Pure and Applied Logic, 174(1):103167, 2023.

Jannik Vierling.

The limits of automated inductive theorem provers. Ph.D. thesis, TU Wien, Austria.