
Arithmetical theories and the automation of induction

Stefan Hetzl Jannik Vierling

Institute of Discrete Mathematics and Geometry
TU Wien, Austria

42ème Journées sur les Arithmétiques Faibles
Karlovassi, Greece
September 25, 2023

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 1 / 21

Motivation: two areas

Mathematical logic: theories of arithmetic

Computer science: automated inductive theorem proving

Find proof by induction automatically
History in computer science dating back to the 1970ies

Difference to first-order theorem proving (validity):
No cut-elimination theorem

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Typical problems:
∀x∀y x + y = y + x
∀l len(rev(l)) = len(l)

Empirical evaluation of implementations

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 2 / 21

Motivation: two areas

Mathematical logic: theories of arithmetic

Computer science: automated inductive theorem proving

Find proof by induction automatically
History in computer science dating back to the 1970ies

Difference to first-order theorem proving (validity):
No cut-elimination theorem

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Typical problems:
∀x∀y x + y = y + x
∀l len(rev(l)) = len(l)

Empirical evaluation of implementations

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 2 / 21

Motivation: two areas

Mathematical logic: theories of arithmetic

Computer science: automated inductive theorem proving

Find proof by induction automatically
History in computer science dating back to the 1970ies

Difference to first-order theorem proving (validity):
No cut-elimination theorem

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Typical problems:
∀x∀y x + y = y + x
∀l len(rev(l)) = len(l)

Empirical evaluation of implementations

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 2 / 21

Motivation: two areas

Mathematical logic: theories of arithmetic

Computer science: automated inductive theorem proving

Find proof by induction automatically
History in computer science dating back to the 1970ies

Difference to first-order theorem proving (validity):
No cut-elimination theorem

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Typical problems:
∀x∀y x + y = y + x
∀l len(rev(l)) = len(l)

Empirical evaluation of implementations

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 2 / 21

Motivation: two areas

Mathematical logic: theories of arithmetic

Computer science: automated inductive theorem proving

Find proof by induction automatically
History in computer science dating back to the 1970ies

Difference to first-order theorem proving (validity):
No cut-elimination theorem

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Typical problems:
∀x∀y x + y = y + x
∀l len(rev(l)) = len(l)

Empirical evaluation of implementations

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 2 / 21

Motivation: two areas

Mathematical logic: theories of arithmetic

Computer science: automated inductive theorem proving

Find proof by induction automatically
History in computer science dating back to the 1970ies

Difference to first-order theorem proving (validity):
No cut-elimination theorem

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Typical problems:
∀x∀y x + y = y + x
∀l len(rev(l)) = len(l)

Empirical evaluation of implementations

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 2 / 21

Motivation: building a connection

M

T σ

Use mathematical logic in order to:
1. classify strength of methods
2. obtain independence results

Straightforward results,
e.g., T = PA, σ = ConPA

Practically meaningful
independence results

▶ Weak arithmetical theories

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 3 / 21

Motivation: building a connection

M

T σ

Use mathematical logic in order to:
1. classify strength of methods
2. obtain independence results

Straightforward results,
e.g., T = PA, σ = ConPA

Practically meaningful
independence results

▶ Weak arithmetical theories

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 3 / 21

Motivation: building a connection

M

T

σ

Use mathematical logic in order to:
1. classify strength of methods
2. obtain independence results

Straightforward results,
e.g., T = PA, σ = ConPA

Practically meaningful
independence results

▶ Weak arithmetical theories

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 3 / 21

Motivation: building a connection

M

T σ

Use mathematical logic in order to:
1. classify strength of methods
2. obtain independence results

Straightforward results,
e.g., T = PA, σ = ConPA

Practically meaningful
independence results

▶ Weak arithmetical theories

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 3 / 21

Motivation: building a connection

M

T σ

Use mathematical logic in order to:
1. classify strength of methods
2. obtain independence results

Straightforward results,
e.g., T = PA, σ = ConPA

Practically meaningful
independence results

▶ Weak arithmetical theories

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 3 / 21

Motivation: building a connection

M

T σ

Use mathematical logic in order to:
1. classify strength of methods
2. obtain independence results

Straightforward results,
e.g., T = PA, σ = ConPA

Practically meaningful
independence results

▶ Weak arithmetical theories

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 3 / 21

Motivation: building a connection

M

T σ

Use mathematical logic in order to:
1. classify strength of methods
2. obtain independence results

Straightforward results,
e.g., T = PA, σ = ConPA

Practically meaningful
independence results

▶ Weak arithmetical theories

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 3 / 21

Specifics of this setting

Often: M and T parametric in language / basic axioms

Coding does not play a role

Not only numbers, also: lists, trees, etc.

Bounded quantifiers are not distinguished

Sometimes: idiosyncracies of method M reflected in T

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 4 / 21

Specifics of this setting

Often: M and T parametric in language / basic axioms

Coding does not play a role

Not only numbers, also: lists, trees, etc.

Bounded quantifiers are not distinguished

Sometimes: idiosyncracies of method M reflected in T

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 4 / 21

Specifics of this setting

Often: M and T parametric in language / basic axioms

Coding does not play a role

Not only numbers, also: lists, trees, etc.

Bounded quantifiers are not distinguished

Sometimes: idiosyncracies of method M reflected in T

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 4 / 21

Specifics of this setting

Often: M and T parametric in language / basic axioms

Coding does not play a role

Not only numbers, also: lists, trees, etc.

Bounded quantifiers are not distinguished

Sometimes: idiosyncracies of method M reflected in T

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 4 / 21

Specifics of this setting

Often: M and T parametric in language / basic axioms

Coding does not play a role

Not only numbers, also: lists, trees, etc.

Bounded quantifiers are not distinguished

Sometimes: idiosyncracies of method M reflected in T

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 4 / 21

Outline

1 Introduction

2 Induction on literals

3 Open Induction

4 Existential Induction

5 Conclusion

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 5 / 21

Induction on Literals

Definition. A literal is an atom or a negated atom.

Definition. The induction axiom Ixφ(x , z) is

φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z).

Definition. For a set of formulas Γ define

Γ-IND = {Ixφ(x , z) | φ(x , z) ∈ Γ}

In particular: Literal-IND

Observation. For natural axioms A in language L = {0, s, p,+}:

A+ Literal-IND ≡ A+Open-IND.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 6 / 21

Induction on Literals

Definition. A literal is an atom or a negated atom.

Definition. The induction axiom Ixφ(x , z) is

φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z).

Definition. For a set of formulas Γ define

Γ-IND = {Ixφ(x , z) | φ(x , z) ∈ Γ}

In particular: Literal-IND

Observation. For natural axioms A in language L = {0, s, p,+}:

A+ Literal-IND ≡ A+Open-IND.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 6 / 21

Induction on Literals

Definition. A literal is an atom or a negated atom.

Definition. The induction axiom Ixφ(x , z) is

φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z).

Definition. For a set of formulas Γ define

Γ-IND = {Ixφ(x , z) | φ(x , z) ∈ Γ}

In particular: Literal-IND

Observation. For natural axioms A in language L = {0, s, p,+}:

A+ Literal-IND ≡ A+Open-IND.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 6 / 21

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition. Clause is a formula
∨n

i=1 Li where Li literal.

Definition. Saturation system S is a set of rules.

Example. The resolution rule is

C ∨ L L′ ∨ D
(C ∨ D)σ

where σ is most general unifier of L and L′.

Definition. Clause set C closed under S if for all n-ary rules ρ ∈ S:
C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition. S sound if C ∈ Cω implies C |= C

Definition. S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 7 / 21

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition. Clause is a formula
∨n

i=1 Li where Li literal.

Definition. Saturation system S is a set of rules.

Example. The resolution rule is

C ∨ L L′ ∨ D
(C ∨ D)σ

where σ is most general unifier of L and L′.

Definition. Clause set C closed under S if for all n-ary rules ρ ∈ S:
C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition. S sound if C ∈ Cω implies C |= C

Definition. S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 7 / 21

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition. Clause is a formula
∨n

i=1 Li where Li literal.

Definition. Saturation system S is a set of rules.

Example. The resolution rule is

C ∨ L L′ ∨ D
(C ∨ D)σ

where σ is most general unifier of L and L′.

Definition. Clause set C closed under S if for all n-ary rules ρ ∈ S:
C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition. S sound if C ∈ Cω implies C |= C

Definition. S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 7 / 21

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition. Clause is a formula
∨n

i=1 Li where Li literal.

Definition. Saturation system S is a set of rules.

Example. The resolution rule is

C ∨ L L′ ∨ D
(C ∨ D)σ

where σ is most general unifier of L and L′.

Definition. Clause set C closed under S if for all n-ary rules ρ ∈ S:
C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition. S sound if C ∈ Cω implies C |= C

Definition. S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 7 / 21

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition. Clause is a formula
∨n

i=1 Li where Li literal.

Definition. Saturation system S is a set of rules.

Example. The resolution rule is

C ∨ L L′ ∨ D
(C ∨ D)σ

where σ is most general unifier of L and L′.

Definition. Clause set C closed under S if for all n-ary rules ρ ∈ S:
C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition. S sound if C ∈ Cω implies C |= C

Definition. S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 7 / 21

Adding explicit induction axioms

Adding induction:

CNF(sk∃(Ixφ(x)))

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, L(a) variable-free

Example. S + SCIND refutes

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c}

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 8 / 21

Adding explicit induction axioms

Adding induction:

CNF(sk∃(Ixφ(x)))

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, L(a) variable-free

Example. S + SCIND refutes

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c}

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 8 / 21

Adding explicit induction axioms

Adding induction:

CNF(sk∃(Ixφ(x)))

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, L(a) variable-free

Example. S + SCIND refutes

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c}

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 8 / 21

Characterisation and independence result

Theorem. S sound saturation system, T ∃2 theory. If S + SCIND
refutes CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Definition.

Let T = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)),¬E (c) ∧ ¬O(c)}.

Theorem. T + Literal-IND is consistent.

Corollary. If S sound saturation system, then S + SCIND does not
refute T .

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 9 / 21

Characterisation and independence result

Theorem. S sound saturation system, T ∃2 theory. If S + SCIND
refutes CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Definition.

Let T = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)),¬E (c) ∧ ¬O(c)}.

Theorem. T + Literal-IND is consistent.

Corollary. If S sound saturation system, then S + SCIND does not
refute T .

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 9 / 21

Characterisation and independence result

Theorem. S sound saturation system, T ∃2 theory. If S + SCIND
refutes CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Definition.

Let T = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)),¬E (c) ∧ ¬O(c)}.

Theorem. T + Literal-IND is consistent.

Corollary. If S sound saturation system, then S + SCIND does not
refute T .

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 9 / 21

Outline

1 Introduction

2 Induction on literals

3 Open Induction

4 Existential Induction

5 Conclusion

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 10 / 21

Open induction

Theorem. [Shoenfield ’58] Over

s(x) ̸= 0 x + 0 = x

p(0) = 0 x + s(y) = s(x + y)

p(s(x)) = x

open induction is equivalent to

x + y = y + x x = 0 ∨ x = s(p(x))

(x + y) + z = x + (y + z) x + y = x + z → y = z

Shepherdson ’60ies: systematic study

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 11 / 21

Open induction for lists

Definition. Let L = {nil, cons,⌢}, let T =

nil ̸= cons(x ,X)

cons(x ,X) = cons(y ,Y) → x = y ∧ X = Y

nil ⌢ Y = Y

cons(x ,X) ⌢ Y = cons(x ,X ⌢ Y)

Theorem. [H, Vierling]

T + Open-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z .

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 12 / 21

Open induction for lists

Definition. Let L = {nil, cons,⌢}, let T =

nil ̸= cons(x ,X)

cons(x ,X) = cons(y ,Y) → x = y ∧ X = Y

nil ⌢ Y = Y

cons(x ,X) ⌢ Y = cons(x ,X ⌢ Y)

Theorem. [H, Vierling]

T + Open-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z .

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 12 / 21

Open Questions

Project. Systematic picture of subsystems of open induction

atomic, literal, clause, dual clause, open induction
for numbers (in various signatures)
for lists, trees, . . .

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 13 / 21

Outline

1 Introduction

2 Induction on literals

3 Open Induction

4 Existential Induction

5 Conclusion

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 14 / 21

Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition. An L ∪ {η} clause set C is a clause set cycle (CSC) if
C(s(η)) |= C(η) and C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted
by a CSC C(η) if D(η) |= C(η).

Variants

Example. CSC refutes Even/Odd example

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 15 / 21

Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition. An L ∪ {η} clause set C is a clause set cycle (CSC) if
C(s(η)) |= C(η) and C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted
by a CSC C(η) if D(η) |= C(η).

Variants

Example. CSC refutes Even/Odd example

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 15 / 21

Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition. An L ∪ {η} clause set C is a clause set cycle (CSC) if
C(s(η)) |= C(η) and C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted
by a CSC C(η) if D(η) |= C(η).

Variants

Example. CSC refutes Even/Odd example

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 15 / 21

Logical characterisation

Definition. Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition. T theory, R inference rule, define

[T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem. D is refuted by a CSC iff D + [∅,∃1-INDR−
η] ⊢ ⊥.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 16 / 21

Logical characterisation

Definition. Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition. T theory, R inference rule, define

[T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem. D is refuted by a CSC iff D + [∅,∃1-INDR−
η] ⊢ ⊥.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 16 / 21

Logical characterisation

Definition. Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition. T theory, R inference rule, define

[T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem. D is refuted by a CSC iff D + [∅,∃1-INDR−
η] ⊢ ⊥.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 16 / 21

Independence result

Definition. LLA = {0, s, p,+}
T = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,

x + 0 = x , x + s(y) = s(x + y),
x + y = y + x , x + (y + z) = (x + y) + z }

Definition. Let k , n,m ∈ N with 0 < n < m, define Ek,n,m as:

n · x + (m − n)k = m · x → x = k

Example. x + 0 = x + x → x = 0 (E0,1,2)

Theorem. T + ∃1-IND− ̸⊢ Ek,n,m

Corollary. Ek,n,m(η) is not refuted by an LLA clause set cycle.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 17 / 21

Independence result

Definition. LLA = {0, s, p,+}
T = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,

x + 0 = x , x + s(y) = s(x + y),
x + y = y + x , x + (y + z) = (x + y) + z }

Definition. Let k , n,m ∈ N with 0 < n < m, define Ek,n,m as:

n · x + (m − n)k = m · x → x = k

Example. x + 0 = x + x → x = 0 (E0,1,2)

Theorem. T + ∃1-IND− ̸⊢ Ek,n,m

Corollary. Ek,n,m(η) is not refuted by an LLA clause set cycle.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 17 / 21

Independence result

Definition. LLA = {0, s, p,+}
T = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,

x + 0 = x , x + s(y) = s(x + y),
x + y = y + x , x + (y + z) = (x + y) + z }

Definition. Let k , n,m ∈ N with 0 < n < m, define Ek,n,m as:

n · x + (m − n)k = m · x → x = k

Example. x + 0 = x + x → x = 0 (E0,1,2)

Theorem. T + ∃1-IND− ̸⊢ Ek,n,m

Corollary. Ek,n,m(η) is not refuted by an LLA clause set cycle.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 17 / 21

Independence result

Definition. LLA = {0, s, p,+}
T = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,

x + 0 = x , x + s(y) = s(x + y),
x + y = y + x , x + (y + z) = (x + y) + z }

Definition. Let k , n,m ∈ N with 0 < n < m, define Ek,n,m as:

n · x + (m − n)k = m · x → x = k

Example. x + 0 = x + x → x = 0 (E0,1,2)

Theorem. T + ∃1-IND− ̸⊢ Ek,n,m

Corollary. Ek,n,m(η) is not refuted by an LLA clause set cycle.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 17 / 21

Independence result: proof

Theorem

T + ∃1-IND− ̸⊢ Ek,n,m

Proof.

Countermodel M, domain {(i , n) ∈ N× Z | i = 0 implies n ∈ N}

0M = (0, 0) pM((0, n)) = (0, n .− 1)

sM(i , n) = (i , n + 1) pM((i , n)) = (i , n − 1) if i > 0

(i , n) +M (j ,m) = (max(i , j), n +m)

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 18 / 21

Independence result: proof

Theorem

T + ∃1-IND− ̸⊢ Ek,n,m

Proof.

Countermodel M, domain {(i , n) ∈ N× Z | i = 0 implies n ∈ N}

0M = (0, 0) pM((0, n)) = (0, n .− 1)

sM(i , n) = (i , n + 1) pM((i , n)) = (i , n − 1) if i > 0

(i , n) +M (j ,m) = (max(i , j), n +m)

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 18 / 21

Open Questions

Iterations of CSCs ... nested applications of ∃1-INDR−
η

Theorem. For every k ∈ N there is a clause set Ck which is refuted
by [∅, ∃1-INDR−]k+1 but not by [∅,∃1-INDR−]k
Proof Sketch. Totality of a suitable function fk .

Question. Is T + ∃1-IND− ∀2-conservative over T + ∃1-INDR− ?

Definition. Let T0 = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,
x + 0 = x , x + s(y) = s(x + y)}.

Conjecture. T0 + ∃1-IND− ̸⊢ x + (x + x) = (x + x) + x .
(Note that T0 + Literal-IND ⊢ x + (x + x) = (x + x) + x .)
(Would yield corollary on CSCs)

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 19 / 21

Open Questions

Iterations of CSCs ... nested applications of ∃1-INDR−
η

Theorem. For every k ∈ N there is a clause set Ck which is refuted
by [∅, ∃1-INDR−]k+1 but not by [∅,∃1-INDR−]k
Proof Sketch. Totality of a suitable function fk .

Question. Is T + ∃1-IND− ∀2-conservative over T + ∃1-INDR− ?

Definition. Let T0 = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,
x + 0 = x , x + s(y) = s(x + y)}.

Conjecture. T0 + ∃1-IND− ̸⊢ x + (x + x) = (x + x) + x .
(Note that T0 + Literal-IND ⊢ x + (x + x) = (x + x) + x .)
(Would yield corollary on CSCs)

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 19 / 21

Open Questions

Iterations of CSCs ... nested applications of ∃1-INDR−
η

Theorem. For every k ∈ N there is a clause set Ck which is refuted
by [∅, ∃1-INDR−]k+1 but not by [∅,∃1-INDR−]k
Proof Sketch. Totality of a suitable function fk .

Question. Is T + ∃1-IND− ∀2-conservative over T + ∃1-INDR− ?

Definition. Let T0 = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,
x + 0 = x , x + s(y) = s(x + y)}.

Conjecture. T0 + ∃1-IND− ̸⊢ x + (x + x) = (x + x) + x .

(Note that T0 + Literal-IND ⊢ x + (x + x) = (x + x) + x .)
(Would yield corollary on CSCs)

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 19 / 21

Open Questions

Iterations of CSCs ... nested applications of ∃1-INDR−
η

Theorem. For every k ∈ N there is a clause set Ck which is refuted
by [∅, ∃1-INDR−]k+1 but not by [∅,∃1-INDR−]k
Proof Sketch. Totality of a suitable function fk .

Question. Is T + ∃1-IND− ∀2-conservative over T + ∃1-INDR− ?

Definition. Let T0 = { s(0) ̸= 0, p(0) = 0, p(s(x)) = x ,
x + 0 = x , x + s(y) = s(x + y)}.

Conjecture. T0 + ∃1-IND− ̸⊢ x + (x + x) = (x + x) + x .
(Note that T0 + Literal-IND ⊢ x + (x + x) = (x + x) + x .)
(Would yield corollary on CSCs)

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 19 / 21

Conclusion and future work

Strategy for analysing method M:

Find upper bound T for strength of M
Independence result for T

▶ Logical foundations of automated inductive theorem proving

▶ Clarify relationship between methods, challenge problems
▶ New questions / problems about (weak) arithemtical theories

Future Work:

Analyse further methods: term rewriting, theory exploration, . . .

Towards a systematic picture: which method solves which problem?

(Weak) theories of inductive datatypes: lists, trees, etc.

Analyticity

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 20 / 21

Conclusion and future work

Strategy for analysing method M:

Find upper bound T for strength of M
Independence result for T

▶ Logical foundations of automated inductive theorem proving

▶ Clarify relationship between methods, challenge problems
▶ New questions / problems about (weak) arithemtical theories

Future Work:

Analyse further methods: term rewriting, theory exploration, . . .

Towards a systematic picture: which method solves which problem?

(Weak) theories of inductive datatypes: lists, trees, etc.

Analyticity

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 20 / 21

Conclusion and future work

Strategy for analysing method M:

Find upper bound T for strength of M
Independence result for T

▶ Logical foundations of automated inductive theorem proving

▶ Clarify relationship between methods, challenge problems
▶ New questions / problems about (weak) arithemtical theories

Future Work:

Analyse further methods: term rewriting, theory exploration, . . .

Towards a systematic picture: which method solves which problem?

(Weak) theories of inductive datatypes: lists, trees, etc.

Analyticity

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 20 / 21

Conclusion and future work

Strategy for analysing method M:

Find upper bound T for strength of M
Independence result for T

▶ Logical foundations of automated inductive theorem proving

▶ Clarify relationship between methods, challenge problems
▶ New questions / problems about (weak) arithemtical theories

Future Work:

Analyse further methods: term rewriting, theory exploration, . . .

Towards a systematic picture: which method solves which problem?

(Weak) theories of inductive datatypes: lists, trees, etc.

Analyticity

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 20 / 21

Conclusion and future work

Strategy for analysing method M:

Find upper bound T for strength of M
Independence result for T

▶ Logical foundations of automated inductive theorem proving

▶ Clarify relationship between methods, challenge problems
▶ New questions / problems about (weak) arithemtical theories

Future Work:

Analyse further methods: term rewriting, theory exploration, . . .

Towards a systematic picture: which method solves which problem?

(Weak) theories of inductive datatypes: lists, trees, etc.

Analyticity

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 20 / 21

Conclusion and future work

Strategy for analysing method M:

Find upper bound T for strength of M
Independence result for T

▶ Logical foundations of automated inductive theorem proving

▶ Clarify relationship between methods, challenge problems
▶ New questions / problems about (weak) arithemtical theories

Future Work:

Analyse further methods: term rewriting, theory exploration, . . .

Towards a systematic picture: which method solves which problem?

(Weak) theories of inductive datatypes: lists, trees, etc.

Analyticity

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 20 / 21

Finish

Thank you!

Stefan Hetzl and Jannik Vierling.
Unprovability results for clause set cycles.
Theoretical Computer Science, 935, 21–46, 2022.

Stefan Hetzl and Jannik Vierling.
Induction and Skolemization in saturation theorem proving.
Annals of Pure and Applied Logic, 174(1):103167, 2023.

Jannik Vierling.
The limits of automated inductive theorem provers.
Ph.D. thesis, TU Wien, Austria.

S. Hetzl, J. Vierling: Arithmetical theories and the automation of induction 21 / 21

	Introduction
	Induction on literals
	Open Induction
	Existential Induction
	Conclusion

