Absolute Undefinability in Arithmetic

Roman Kossak
City University of New York
JAF on Samos, September 2023

A program?

Problem

When is a countable nonstandard model of . . . expandable to a model of , and if there is an expansion, how hard is it to find it?

We will consider expansions of
(1) models of $\operatorname{Th}(\mathbb{N}, S)$ to models of $\operatorname{Th}(\mathbb{N},<)$, where S is a successor relation;
(2) models Th $(\mathbb{N},<)$ to models of Presburger arithmetic Pr;
(3) models of Pr to models of PA;

A program?

Problem

When is a countable nonstandard model of . . . expandable to a model of , and if there is an expansion, how hard is it to find it?

We will consider expansions of
(1) models of $\operatorname{Th}(\mathbb{N}, S)$ to models of $\operatorname{Th}(\mathbb{N},<)$, where S is a successor relation;
(2) models $\operatorname{Th}(\mathbb{N},<)$ to models of Presburger arithmetic Pr;
4) models of PA to models axiomatic theories of truth or satisfaction.

A program?

Problem

When is a countable nonstandard model of . . . expandable to a model of , and if there is an expansion, how hard is it to find it?

We will consider expansions of
(1) models of $\operatorname{Th}(\mathbb{N}, S)$ to models of $\operatorname{Th}(\mathbb{N},<)$, where S is a successor relation;
(2) models $\operatorname{Th}(\mathbb{N},<)$ to models of Presburger arithmetic Pr ;
(3) models of Pr to models of PA;
(4) models of PA to models axiomatic theories of truth or satisfaction.

A program?

Problem

When is a countable nonstandard model of ... expandable to a model of , and if there is an expansion, how hard is it to find it?

We will consider expansions of
(1) models of $\operatorname{Th}(\mathbb{N}, S)$ to models of $\operatorname{Th}(\mathbb{N},<)$, where S is a successor relation;
(2) models $\operatorname{Th}(\mathbb{N},<)$ to models of Presburger arithmetic Pr;
(3) models of Pr to models of PA;
(4) models of PA to models axiomatic theories of truth or satisfaction.

Expansions of the standard model

Theorem

Let S be the successor relation in the set of natural numbers \mathbb{N}.
(1) (\mathbb{N}, S) and $(\mathbb{N},<)$ are minimal, i.e., every definable subset of \mathbb{N} is either finite or cofinite.
(2) $(\mathbb{N},<)$ is a proper expansion of (\mathbb{N}, S)
(3) Even numbers are definable in $(\mathbb{N},+)$; hence, $(\mathbb{N},+)$ is a proper expansion of $(\mathbb{N},<)$.

Expansions of the standard model

Theorem

Let S be the successor relation in the set of natural numbers \mathbb{N}.
(1) (\mathbb{N}, S) and $(\mathbb{N},<)$ are minimal, i.e., every definable subset of \mathbb{N} is either finite or cofinite.
(2) $(\mathbb{N},<)$ is a proper expansion of (\mathbb{N}, S)
(3) Even numbers are definable in $(\mathbb{N},+)$; hence, $(\mathbb{N},+)$ is a proper expansion of $(\mathbb{N},<)$.

Theorem (Ginsburg-Spanier)

All subsets of \mathbb{N} that are definable in $(\mathbb{N},+)$ are ultimately periodic, i,e., for each definable X there is a p such that for sufficiently large x

$$
x \in X \Longleftrightarrow x+p \in X
$$

Squares are definable in (\mathbb{N}, \times); hence $(\mathbb{N},+, \times)$ is proper expansion

Expansions of the standard model

Theorem

Let S be the successor relation in the set of natural numbers \mathbb{N}.
(1) (\mathbb{N}, S) and $(\mathbb{N},<)$ are minimal, i.e., every definable subset of \mathbb{N} is either finite or cofinite.
(2) $(\mathbb{N},<)$ is a proper expansion of (\mathbb{N}, S)
(3) Even numbers are definable in $(\mathbb{N},+)$; hence, $(\mathbb{N},+)$ is a proper expansion of $(\mathbb{N},<)$.

Theorem (Ginsburg-Spanier)

All subsets of \mathbb{N} that are definable in $(\mathbb{N},+)$ are ultimately periodic, i,e., for each definable X there is a p such that for sufficiently large x

$$
x \in X \Longleftrightarrow x+p \in X
$$

Corollary
Squares are definable in (\mathbb{N}, \times); hence $(\mathbb{N},+, \times)$ is proper expansion $(\mathbb{N},+)$.

Multiplication is not definable from addition

Observation

S is not definable in (\mathbb{N}, \times). There is $f \in \operatorname{Aut}(\mathbb{N}, \times)$ such that $(2)=3$ and $f(3)=2$. However,

$$
x+y=z \Leftrightarrow(z x+1)(z y+1)=z^{2}(x y+1)+1 .^{a}
$$

Hence, + is definable in (\mathbb{N}, \times, S).

[^0]
Truth and partial truth

Theorem (Tarski)

$\operatorname{Tr}=\{\ulcorner\varphi\urcorner:(\mathbb{N},+, \times) \models \varphi\}$ is undefinable. Hence $(\mathbb{N},+, \times, \operatorname{Tr})$ is a proper expansion of $(\mathbb{N},+, \times)$.

Theorem (Kleene et al.)
For each $n, \operatorname{Tr}_{n}=\left\{\ulcorner\varphi\urcorner: \varphi \in \Sigma_{n} \&(\mathbb{N},+, \times) \models \varphi\right\}$ is definable in $(\mathbb{N},+, \times)$.

More expressive power: infinite conjunctions and disjunctions

Definition

$\mathcal{L}_{\omega_{1}, \omega}$ is an extension of $\mathcal{L}_{\omega, \omega}$ with one additional rule: if Φ is a countable set of formulas with a fixed finite number of free variables, then $\bigwedge \Phi$ and $\bigvee \Phi$ are formulas.

More expressive power: infinite conjunctions and disjunctions

Definition

$\mathcal{L}_{\omega_{1}, \omega}$ is an extension of $\mathcal{L}_{\omega, \omega}$ with one additional rule: if Φ is a countable set of formulas with a fixed finite number of free variables, then $\wedge \Phi$ and $\bigvee \Phi$ are formulas.

Example

Let $\varphi_{0}(x)=\forall y \neg S(y, x)$ and for all n, let $\varphi_{n+1}(x)=\exists y\left[\varphi_{n}(y) \wedge S(y, x)\right]$. Then, for every $X \subseteq \mathbb{N}$,

$$
X=\left\{x:(\mathbb{N}, S) \models \bigvee_{n \in X} \varphi_{n}(x)\right\}
$$

In particular, addition is defined by

$$
\bigvee\left\{\varphi_{m}(x) \wedge \varphi_{n}(y) \wedge \varphi_{k}(z): m+n=k\right\}
$$

More expressive power: infinite conjunctions and disjunctions

Definition

$\mathcal{L}_{\omega_{1}, \omega}$ is an extension of $\mathcal{L}_{\omega, \omega}$ with one additional rule: if Φ is a countable set of formulas with a fixed finite number of free variables, then $\bigwedge \Phi$ and $\bigvee \Phi$ are formulas.

Example

Let $\varphi_{0}(x)=\forall y \neg S(y, x)$ and for all n, let $\varphi_{n+1}(x)=\exists y\left[\varphi_{n}(y) \wedge S(y, x)\right]$. Then, for every $X \subseteq \mathbb{N}$,

$$
X=\left\{x:(\mathbb{N}, S) \models \bigvee_{n \in X} \varphi_{n}(x)\right\}
$$

In particular, addition is defined by

$$
\bigvee\left\{\varphi_{m}(x) \wedge \varphi_{n}(y) \wedge \varphi_{k}(z): m+n=k\right\}
$$

Example

$\operatorname{Tr}(x)=\bigvee\left\{\operatorname{Tr}_{n}(x): n \in \mathbb{N}\right\}$.

Resplendence

Definition

A structure \mathfrak{M} is resplendent if for any first-order sentence $\varphi(R)$ with a new relation symbol R, if \mathfrak{M} has an elementary extension that is expandable to a model of $\varphi(R)$, then \mathfrak{M} is expandable to a model of $\varphi(R)$.

Resplendence is relevant

Theorem (Presburger)

Satisfaction relation in additive reducts is definable in models of PA; hence, if $(M,+, x)$ is a nonstandard countable model of PA, then $(M,+)$ is resplendent.

Resplendence is relevant

Theorem (Presburger)

Satisfaction relation in additive reducts is definable in models of PA; hence, if $(M,+, \times)$ is a nonstandard countable model of PA, then $(M,+)$ is resplendent.

Theorem (Cegielski, Nadel)

Satisfaction relation for multiplicative reducts is definable in models of PA; hence, if $(M,+, \times)$ is a nonstandard countable model of PA, then (M, \times) is resplendent.

Resplendence is relevant

Theorem (Presburger)

Satisfaction relation in additive reducts is definable in models of PA; hence, if $(M,+, x)$ is a nonstandard countable model of PA, then $(M,+)$ is resplendent.

Theorem (Cegielski, Nadel)

Satisfaction relation for multiplicative reducts is definable in models of PA; hence, if $(M,+, x)$ is a nonstandard countable model of PA, then (M, \times) is resplendent.

Theorem (Kotlarski, Krajewski, Lachlan)

A countable nonstandard model of PA carries a full satisfaction class if and only if it is resplendent.

Counting automorphic images

Theorem (Scott)

For every countable structure $\mathfrak{M}=(M, \ldots)$ and every $X \subseteq M^{n}$, t.f. a. a.e.
(1) X is preserved by all automorphisms of \mathfrak{M}, i.e., $f(X)=X$ for every automorphism f.
(2) X is $\mathcal{L}_{\omega_{1}, \omega}$-definable in \mathfrak{M}.

Theorem (Kueker)

For every countable structure $\mathfrak{M}=(M, \ldots)$ and every $R \subseteq M^{n}$, t.f. a.e.
(1) R has at most κ_{0} automorphic images.
(2) R has less than $2^{\aleph_{0}}$ automorphic images.
(3) R is parametrically $\mathcal{L}_{\omega_{1}, \omega}$-definable in \mathfrak{M}.

Counting automorphic images

Theorem (Scott)

For every countable structure $\mathfrak{M}=(M, \ldots)$ and every $X \subseteq M^{n}$, t.f. a. a.e.
(1) X is preserved by all automorphisms of \mathfrak{M}, i.e., $f(X)=X$ for every automorphism f.
(2) X is $\mathcal{L}_{\omega_{1}, \omega}$-definable in \mathfrak{M}.

Theorem (Kueker)

For every countable structure $\mathfrak{M}=(M, \ldots)$ and every $R \subseteq M^{n}$, t.f. a.e.
(1) R has at most κ_{0} automorphic images.
(2) R has less than $2^{\aleph_{0}}$ automorphic images.
(3) R is parametrically $\mathcal{L}_{\omega_{1}, \omega}$-definable in \mathfrak{M}.

Counting automorphic images

Theorem (Scott)

For every countable structure $\mathfrak{M}=(M, \ldots)$ and every $X \subseteq M^{n}$, t.f. a.e.
(1) X is preserved by all automorphisms of \mathfrak{M}, i.e., $f(X)=X$ for every automorphism f.
(2) X is $\mathcal{L}_{\omega_{1}, \omega}$-definable in \mathfrak{M}.

Theorem (Kueker)

For every countable structure $\mathfrak{M}=(M, \ldots)$ and every $R \subseteq M^{n}$, t.f. a.e.
(1) R has at most \aleph_{0} automorphic images.
(2) R has less than $2^{\aleph_{0}}$ automorphic images.
(3) R is parametrically $\mathcal{L}_{\omega_{1}, \omega}$-definable in \mathfrak{M}.

Corollary

If $|\operatorname{Aut}(\mathfrak{M})|<2^{\aleph_{0}}$, then every relation on \mathfrak{M} is parametrically $\mathcal{L}_{\omega_{1}, \omega}$-definable.

Absolute undefinability

Corollary

If a relation R on a $\operatorname{ct} \mathfrak{M}$ is parametrically \mathcal{L} definable, for some logic \mathcal{L}, the R is parametrically $\mathcal{L}_{\omega_{1}, \omega}$ definable.

Absolute undefinability

Corollary

If a relation R on a ct \mathfrak{M} is parametrically \mathcal{L} definable, for some logic \mathcal{L}, the R is parametrically $\mathcal{L}_{\omega_{1}, \omega}$ definable.

Definition

A relation on the domain of a countable \mathfrak{M} is absolutely undefinable if it has $2^{\aleph_{0}}$ automorphic images. ${ }^{\text {a }}$.

[^1]
Absolute undefinability

Corollary

If a relation R on a ct \mathfrak{M} is parametrically \mathcal{L} definable, for some logic \mathcal{L}, the R is parametrically $\mathcal{L}_{\omega_{1}, \omega}$ definable.

Definition

A relation on the domain of a countable \mathfrak{M} is absolutely undefinable if it has $2^{\aleph_{0}}$ automorphic images. ${ }^{\text {a }}$.

[^2]
Absolute undefinability cannot be avoided

Theorem (Barwise, Schlipf)
 Every countable resplendent model has continuum many automorphisms.

\square

Absolute undefinability cannot be avoided

Theorem (Barwise, Schlipf)

Every countable resplendent model has continuum many automorphisms.

Theorem (Schlipf)

If (\mathfrak{M}, R) is countable, resplendent, and R is not parametrically definable in \mathfrak{M}, then has $2^{\aleph_{0}}$ automorphic images.

Absolute undefinability cannot be avoided

Theorem (Barwise, Schlipf)

Every countable resplendent model has continuum many automorphisms.

Theorem (Schlipf)

If (\mathfrak{M}, R) is countable, resplendent, and R is not parametrically definable in \mathfrak{M}, then has $2^{\aleph_{0}}$ automorphic images.

Corollary

It \mathfrak{M} is countable, resplendent, and there is a parametrically undefinable R such that $(\mathfrak{M}, R) \models \varphi(R)$, then there is an absolutely undefinable R such that $(\mathfrak{M}, R) \models \varphi(R)$.

Absolutely undefinable expansions

(1) A model of $\operatorname{Th}(\mathbb{N}, S)$ to a model of $\operatorname{Th}(\mathbb{N},<)$. Always exist. All expansions are absolutely undefinable when (M, S) is resplendent; otherwise they are all $\mathcal{L}_{\omega_{1}, \omega}$ definable.
resplendent and they are all absolutely undefinable (Emil Jeřábek)

Absolutely undefinable expansions

(1) A model of $\operatorname{Th}(\mathbb{N}, S)$ to a model of $\operatorname{Th}(\mathbb{N},<)$. Always exist. All expansions are absolutely undefinable when (M, S) is resplendent; otherwise they are all $\mathcal{L}_{\omega_{1}, \omega}$ definable.
(2) A model $\operatorname{Th}(\mathbb{N},<)$ to a model of Pr. Exist if an only if $(M,<)$ is resplendent and they are all absolutely undefinable (Emil Jeřábek).

Absolutely undefinable expansions

(1) A model of $\operatorname{Th}(\mathbb{N}, S)$ to a model of $\operatorname{Th}(\mathbb{N},<)$. Always exist. All expansions are absolutely undefinable when (M, S) is resplendent; otherwise they are all $\mathcal{L}_{\omega_{1}, \omega}$ definable.
(2) A model $\operatorname{Th}(\mathbb{N},<)$ to a model of Pr. Exist if an only if $(M,<)$ is resplendent and they are all absolutely undefinable (Emil Jeřábek).
(3) A model of Pr to a model of PA. Exist if an only if $(M,+)$ is resplendent and they are all absolutely undefinable (Alfred Dolich, Simon Heller, based on the work of David Llewellyn-Jones on automorphisms of models of Pr.)

Absolutely undefinable expansions

(1) A model of $\operatorname{Th}(\mathbb{N}, S)$ to a model of $\operatorname{Th}(\mathbb{N},<)$. Always exist. All expansions are absolutely undefinable when (M, S) is resplendent; otherwise they are all $\mathcal{L}_{\omega_{1}, \omega}$ definable.
(2) A model $\operatorname{Th}(\mathbb{N},<)$ to a model of Pr. Exist if an only if $(M,<)$ is resplendent and they are all absolutely undefinable (Emil Jeřábek).
(3) A model of Pr to a model of PA. Exist if an only if $(M,+)$ is resplendent and they are all absolutely undefinable (Alfred Dolich, Simon Heller, based on the work of David Llewellyn-Jones on automorphisms of models of Pr.)
(4) A model of PA to a model of one of the axiomatic theories of truth or satisfaction. Exist if an only if $(M,+, \times)$ is resplendent and they are all absolutely undefinable... a longer story.

Counting Classes and Satisfaction Classes

Let \mathfrak{M} be a countable resplendent model of PA. The following sets are absolutely undefinable in \mathfrak{M} :

Counting Classes and Satisfaction Classes

Let \mathfrak{M} be a countable resplendent model of PA. The following sets are absolutely undefinable in \mathfrak{M} :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes $X \subseteq M$ is a class if for every $a,\{x \in X: x<a\}$ is parametrically
definable. If (M, X) is a model of $\mathrm{PA}(X)$, we call X inductive. All
inductive sets are classes; hence all undefinable classes absolutely undefinable.

Counting Classes and Satisfaction Classes

Let \mathfrak{M} be a countable resplendent model of PA. The following sets are absolutely undefinable in \mathfrak{M} :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.
$X \subseteq M$ is a class if for every $a,\{x \in X: x<a\}$ is parametrically definable. If (M, X) is a model of $\mathrm{PA}(X)$, we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.
- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, Notre Dame J. Formal
- (RK, Kotlarski) Graphs of nontrivial automorphisms

Counting Classes and Satisfaction Classes

Let \mathfrak{M} be a countable resplendent model of PA. The following sets are absolutely undefinable in \mathfrak{M} :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.
$X \subseteq M$ is a class if for every $a,\{x \in X: x<a\}$ is parametrically definable. If (M, X) is a model of $\mathrm{PA}(X)$, we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.
- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (Schmerl) Cofinal elementary submodels.

Counting Classes and Satisfaction Classes

Let \mathfrak{M} be a countable resplendent model of PA. The following sets are absolutely undefinable in \mathfrak{M} :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.
$X \subseteq M$ is a class if for every $a,\{x \in X: x<a\}$ is parametrically definable. If (M, X) is a model of $\mathrm{PA}(X)$, we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.
- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.

Counting Classes and Satisfaction Classes

Let \mathfrak{M} be a countable resplendent model of PA. The following sets are absolutely undefinable in \mathfrak{M} :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.
$X \subseteq M$ is a class if for every $a,\{x \in X: x<a\}$ is parametrically definable. If (M, X) is a model of $\mathrm{PA}(X)$, we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.
- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.

[^0]: ${ }^{a}$ Tarski-Robinson Identity. I found it in Axiomatic (and Non-Axiomatic) Mathematics by Saeed Salehi, Rocky Mountain Journal of Mathematics 52:4 (2022).

[^1]: ${ }^{a}$ Athanassios Tzouvaras, in A note on real subsets of a recursively saturated model, Z. Math. Logik Grundlag. Math. 37 (1991) called such R imaginary

[^2]: ${ }^{a}$ Athanassios Tzouvaras, in A note on real subsets of a recursively saturated model, Z. Math. Logik Grundlag. Math. 37 (1991) called such R imaginary

 ## Lemma (Kueker-Reyes Lemma)

 Let $\mathfrak{M}=(M, \ldots)$ be countable. If for for every tuple \bar{a} in $M^{<\omega}$ there are $b \in R$ and $c \notin R$ such that $\operatorname{tp}(\bar{a}, b)=\operatorname{tp}(\bar{a}, c)$, then R is absolutely undefinable.

