# Absolute Undefinability in Arithmetic

Roman Kossak

City University of New York

JAF on Samos, September 2023

#### **Problem**

When is a countable nonstandard model of ... expandable to a model of ..., and if there is an expansion, how hard is it to find it?

- **1** models of  $\operatorname{Th}(\mathbb{N},S)$  to models of  $\operatorname{Th}(\mathbb{N},<)$ , where S is a successor relation;
- ② models  $Th(\mathbb{N},<)$  to models of Presburger arithmetic Pr;
- o models of Pr to models of PA;
- Models of PA to models axiomatic theories of truth or satisfaction.

#### **Problem**

When is a countable nonstandard model of ... expandable to a model of ..., and if there is an expansion, how hard is it to find it?

- **1** models of  $\operatorname{Th}(\mathbb{N},S)$  to models of  $\operatorname{Th}(\mathbb{N},<)$ , where S is a successor relation;
- $oldsymbol{2}$  models  $\operatorname{Th}(\mathbb{N},<)$  to models of Presburger arithmetic Pr;
- models of Pr to models of PA;
- Models of PA to models axiomatic theories of truth or satisfaction.

#### **Problem**

When is a countable nonstandard model of ... expandable to a model of ..., and if there is an expansion, how hard is it to find it?

- **1** models of  $\operatorname{Th}(\mathbb{N},S)$  to models of  $\operatorname{Th}(\mathbb{N},<)$ , where S is a successor relation;
- 2 models  $\operatorname{Th}(\mathbb{N},<)$  to models of Presburger arithmetic Pr;
- models of Pr to models of PA;
- Models of PA to models axiomatic theories of truth or satisfaction.

#### **Problem**

When is a countable nonstandard model of ... expandable to a model of ..., and if there is an expansion, how hard is it to find it?

- **1** models of  $\operatorname{Th}(\mathbb{N},S)$  to models of  $\operatorname{Th}(\mathbb{N},<)$ , where S is a successor relation;
- 2 models  $\operatorname{Th}(\mathbb{N},<)$  to models of Presburger arithmetic Pr;
- models of Pr to models of PA;
- Models of PA to models axiomatic theories of truth or satisfaction.

### Expansions of the standard model

#### Theorem

Let S be the successor relation in the set of natural numbers  $\mathbb{N}$ .

- $lackbox{0}$   $(\mathbb{N},S)$  and  $(\mathbb{N},<)$  are minimal, i.e., every definable subset of  $\mathbb{N}$  is either finite or cofinite.
- $(\mathbb{N},<)$  is a proper expansion of  $(\mathbb{N},S)$
- **3** Even numbers are definable in  $(\mathbb{N},+)$ ; hence,  $(\mathbb{N},+)$  is a proper expansion of  $(\mathbb{N},<)$ .

#### Theorem (Ginsburg-Spanier)

All subsets of  $\mathbb N$  that are definable in  $(\mathbb N,+)$  are ultimately periodic, i,e., for each definable X there is a p such that for sufficiently large x

$$x \in X \iff x + p \in X$$
.

#### Corollary

Squares are definable in  $(\mathbb{N},\times)$ ; hence  $(\mathbb{N},+,\times)$  is proper expansion  $(\mathbb{N},+).$ 

### Expansions of the standard model

#### Theorem

Let S be the successor relation in the set of natural numbers  $\mathbb{N}$ .

- $lackbox{0}$   $(\mathbb{N},S)$  and  $(\mathbb{N},<)$  are minimal, i.e., every definable subset of  $\mathbb{N}$  is either finite or cofinite.
- $(\mathbb{N},<)$  is a proper expansion of  $(\mathbb{N},S)$
- **3** Even numbers are definable in  $(\mathbb{N},+)$ ; hence,  $(\mathbb{N},+)$  is a proper expansion of  $(\mathbb{N},<)$ .

### Theorem (Ginsburg-Spanier)

All subsets of  $\mathbb N$  that are definable in  $(\mathbb N,+)$  are ultimately periodic, i,e., for each definable X there is a p such that for sufficiently large x

$$x \in X \Longleftrightarrow x + p \in X$$
.

### Corollary

Squares are definable in  $(\mathbb{N}, \times)$ ; hence  $(\mathbb{N}, +, \times)$  is proper expansion  $(\mathbb{N}, +)$ .



### Expansions of the standard model

#### **Theorem**

Let S be the successor relation in the set of natural numbers  $\mathbb{N}$ .

- $lackbox{0}$   $(\mathbb{N},S)$  and  $(\mathbb{N},<)$  are minimal, i.e., every definable subset of  $\mathbb{N}$  is either finite or cofinite.
- $(\mathbb{N},<)$  is a proper expansion of  $(\mathbb{N},S)$
- **3** Even numbers are definable in  $(\mathbb{N},+)$ ; hence,  $(\mathbb{N},+)$  is a proper expansion of  $(\mathbb{N},<)$ .

### Theorem (Ginsburg-Spanier)

All subsets of  $\mathbb N$  that are definable in  $(\mathbb N,+)$  are ultimately periodic, i,e., for each definable X there is a p such that for sufficiently large x

$$x \in X \Longleftrightarrow x + p \in X$$
.

### Corollary

Squares are definable in  $(\mathbb{N},\times)$ ; hence  $\,(\mathbb{N},+,\times)$  is proper expansion  $(\mathbb{N},+).$ 

# Multiplication is not definable from addition

#### Observation

S is not definable in  $(\mathbb{N},\times)$ . There is  $f\in \mathrm{Aut}(\mathbb{N},\times)$  such that (2)=3 and f(3)=2. However,

$$x + y = z \Leftrightarrow (zx + 1)(zy + 1) = z^{2}(xy + 1) + 1.^{\sigma}$$

Hence, + is definable in  $(\mathbb{N}, \times, S)$ .

<sup>&</sup>lt;sup>a</sup>Tarski-Robinson Identity. I found it in *Axiomatic (and Non-Axiomatic) Mathematics* by Saeed Salehi, Rocky Mountain Journal of Mathematics 52:4 (2022).

# Truth and partial truth

#### Theorem (Tarski)

 $\mathsf{Tr} = \{ \ulcorner \varphi \urcorner : (\mathbb{N}, +, \times) \models \varphi \}$  is undefinable. Hence  $(\mathbb{N}, +, \times, \mathsf{Tr})$  is a proper expansion of  $(\mathbb{N}, +, \times)$ .

### Theorem (Kleene et al.)

For each n,  $\operatorname{Tr}_n = \{ \ulcorner \varphi \urcorner : \varphi \in \Sigma_n \& (\mathbb{N}, +, \times) \models \varphi \}$  is definable in  $(\mathbb{N}, +, \times)$ .

# More expressive power: infinite conjunctions and disjunctions

#### Definition

 $\mathcal{L}_{\omega_1,\omega}$  is an extension of  $\mathcal{L}_{\omega,\omega}$  with one additional rule: if  $\Phi$  is a countable set of formulas with a fixed finite number of free variables, then  $\bigwedge \Phi$  and  $\bigvee \Phi$  are formulas.

#### Example

Let  $\varphi_0(x) = \forall y \neg S(y, x)$  and for all n, let  $\varphi_{n+1}(x) = \exists y [\varphi_n(y) \land S(y, x)]$ . Then, for every  $X \subseteq \mathbb{N}$ ,

$$X = \{x : (\mathbb{N}, S) \models \bigvee_{n \in X} \varphi_n(x)\}.$$

In particular, addition is defined by

$$\bigvee \{\varphi_m(x) \wedge \varphi_n(y) \wedge \varphi_k(z) : m+n=k\}.$$

#### Example

 $\operatorname{Tr}(x) = \bigvee \{ \operatorname{Tr}_n(x) : n \in \mathbb{N} \}.$ 



# More expressive power: infinite conjunctions and disjunctions

#### Definition

 $\mathcal{L}_{\omega_1,\omega}$  is an extension of  $\mathcal{L}_{\omega,\omega}$  with one additional rule: if  $\Phi$  is a countable set of formulas with a fixed finite number of free variables, then  $\bigwedge \Phi$  and  $\bigvee \Phi$  are formulas.

### Example

Let  $\varphi_0(x) = \forall y \neg S(y,x)$  and for all n, let  $\varphi_{n+1}(x) = \exists y [\varphi_n(y) \land S(y,x)]$ . Then, for every  $X \subseteq \mathbb{N}$ ,

$$X = \{x : (\mathbb{N}, S) \models \bigvee_{n \in X} \varphi_n(x)\}.$$

In particular, addition is defined by

$$\bigvee \{\varphi_m(x) \wedge \varphi_n(y) \wedge \varphi_k(z) : m+n=k\}.$$

#### Example

 $\operatorname{Tr}(x) = \bigvee \{ \operatorname{Tr}_n(x) : n \in \mathbb{N} \}.$ 



# More expressive power: infinite conjunctions and disjunctions

#### Definition

 $\mathcal{L}_{\omega_1,\omega}$  is an extension of  $\mathcal{L}_{\omega,\omega}$  with one additional rule: if  $\Phi$  is a countable set of formulas with a fixed finite number of free variables, then  $\bigwedge \Phi$  and  $\bigvee \Phi$  are formulas.

#### Example

Let  $\varphi_0(x)=\forall y\neg S(y,x)$  and for all n, let  $\varphi_{n+1}(x)=\exists y[\varphi_n(y)\wedge S(y,x)].$ Then, for every  $X\subseteq\mathbb{N}$ ,

$$X = \{x : (\mathbb{N}, S) \models \bigvee_{n \in X} \varphi_n(x)\}.$$

In particular, addition is defined by

$$\bigvee \{\varphi_m(x) \wedge \varphi_n(y) \wedge \varphi_k(z) : m+n=k\}.$$

#### Example

$$\operatorname{Tr}(x) = \bigvee \{ \operatorname{Tr}_n(x) : n \in \mathbb{N} \}.$$



### Resplendence

#### Definition

A structure  $\mathfrak M$  is resplendent if for any first-order sentence  $\varphi(R)$  with a new relation symbol R, if  $\mathfrak M$  has an elementary extension that is expandable to a model of  $\varphi(R)$ , then  $\mathfrak M$  is expandable to a model of  $\varphi(R)$ .



# Resplendence is relevant

### Theorem (Presburger)

Satisfaction relation in additive reducts is definable in models of PA; hence, if  $(M,+,\times)$  is a nonstandard countable model of PA, then (M,+) is resplendent.

#### Theorem (Cegielski, Nadel)

Satisfaction relation for multiplicative reducts is definable in models of PA; hence, if  $(M,+,\times)$  is a nonstandard countable model of PA, then  $(M,\times)$  is resplendent.

### Theorem (Kotlarski, Krajewski, Lachlan)

A countable nonstandard model of PA carries a full satisfaction class if and only if it is resplendent.



# Resplendence is relevant

### Theorem (Presburger)

Satisfaction relation in additive reducts is definable in models of PA; hence, if  $(M, +, \times)$  is a nonstandard countable model of PA, then (M, +) is resplendent.

### Theorem (Cegielski, Nadel)

Satisfaction relation for multiplicative reducts is definable in models of PA; hence, if  $(M,+,\times)$  is a nonstandard countable model of PA, then  $(M,\times)$  is resplendent.

#### Theorem (Kotlarski, Krajewski, Lachlan)

A countable nonstandard model of PA carries a full satisfaction class if and only if it is resplendent.



# Resplendence is relevant

### Theorem (Presburger)

Satisfaction relation in additive reducts is definable in models of PA; hence, if  $(M,+,\times)$  is a nonstandard countable model of PA, then (M,+) is resplendent.

### Theorem (Cegielski, Nadel)

Satisfaction relation for multiplicative reducts is definable in models of PA; hence, if  $(M,+,\times)$  is a nonstandard countable model of PA, then  $(M,\times)$  is resplendent.

#### Theorem (Kotlarski, Krajewski, Lachlan)

A countable nonstandard model of PA carries a full satisfaction class if and only if it is resplendent.



# Counting automorphic images

#### Theorem (Scott)

For every countable structure  $\mathfrak{M}=(M,\dots)$  and every  $X\subseteq M^n$  , t.f.a.e.

- **1** X is preserved by all automorphisms of  $\mathfrak{M}$ , i.e., f(X) = X for every automorphism f.

### Theorem (Kueker)

For every countable structure  $\mathfrak{M}=(M,\ldots)$  and every  $R\subseteq M^n$  , t.f.a.e.

- **1** R has at most  $\aleph_0$  automorphic images.
- 2 R has less than  $2^{\aleph_0}$  automorphic images.
- $\bullet$  R is parametrically  $\mathcal{L}_{\omega_1,\omega}$ -definable in  $\mathfrak{M}$ .

#### Corollary

If  $|\operatorname{Aut}(\mathfrak{M})| < 2^{\aleph_0}$ , then every relation on  $\mathfrak{M}$  is parametrically  $\mathcal{L}_{\omega_1,\omega}$ -definable.



# Counting automorphic images

#### Theorem (Scott)

For every countable structure  $\mathfrak{M}=(M,\dots)$  and every  $X\subseteq M^n$  , t.f.a.e.

- **1** X is preserved by all automorphisms of  $\mathfrak{M}$ , i.e., f(X) = X for every automorphism f.

### Theorem (Kueker)

For every countable structure  $\mathfrak{M}=(M,\ldots)$  and every  $R\subseteq M^n$  , t.f.a.e.

- **1** R has at most  $\aleph_0$  automorphic images.
- 2 R has less than  $2^{\aleph_0}$  automorphic images.
- $\bullet$  R is parametrically  $\mathcal{L}_{\omega_1,\omega}$ -definable in  $\mathfrak{M}$ .

#### Corollary

If  $|\operatorname{Aut}(\mathfrak{M})| < 2^{\aleph_0}$ , then every relation on  $\mathfrak{M}$  is parametrically  $\mathcal{L}_{\omega_1,\omega}$ -definable.



# Counting automorphic images

#### Theorem (Scott)

For every countable structure  $\mathfrak{M}=(M,\ldots)$  and every  $X\subseteq M^n$  , t.f.a.e.

- **1** X is preserved by all automorphisms of  $\mathfrak{M}$ , i.e., f(X) = X for every automorphism f.
- X is  $\mathcal{L}_{\omega_1,\omega}$ -definable in  $\mathfrak{M}$ .

#### Theorem (Kueker)

For every countable structure  $\mathfrak{M}=(M,\ldots)$  and every  $R\subseteq M^n$  , t.f.a.e.

- **1** R has at most  $\aleph_0$  automorphic images.
- 2 R has less than  $2^{\aleph_0}$  automorphic images.
- **3** R is parametrically  $\mathcal{L}_{\omega_1,\omega}$ -definable in  $\mathfrak{M}$ .

### Corollary

If  $|\operatorname{Aut}(\mathfrak{M})| < 2^{\aleph_0}$ , then every relation on  $\mathfrak{M}$  is parametrically  $\mathcal{L}_{\omega_1,\omega}$ -definable.



# Absolute undefinability

### Corollary

If a relation R on a ct  $\mathfrak{M}$  is parametrically  $\mathcal{L}$  definable, for some logic  $\mathcal{L}$ , the R is parametrically  $\mathcal{L}_{\omega_1,\omega}$  definable.

#### Definition

A relation on the domain of a countable  $\mathfrak M$  is absolutely undefinable if it has  $2^{\aleph_0}$  automorphic images.<sup>a</sup>.

 $^{o}$ Athanassios Tzouvaras, in A note on real subsets of a recursively saturated model, Z. Math. Logik Grundlag. Math. 37 (1991) called such R imaginary

#### Lemma (Kueker-Reves Lemma)

Let  $\mathfrak{M}=(M,\dots)$  be countable. If for for every tuple  $\bar{a}$  in  $M^{<\omega}$  there are  $b\in R$  and  $c\notin R$  such that  $\operatorname{tp}(\bar{a},b)=\operatorname{tp}(\bar{a},c)$ , then R is absolutely undefinable.

# Absolute undefinability

### Corollary

If a relation R on a ct  $\mathfrak{M}$  is parametrically  $\mathcal{L}$  definable, for some logic  $\mathcal{L}$ , the R is parametrically  $\mathcal{L}_{\omega_1,\omega}$  definable.

#### Definition

A relation on the domain of a countable  $\mathfrak M$  is absolutely undefinable if it has  $2^{\aleph_0}$  automorphic images. $^{\mathfrak a}$ .

<sup>a</sup>Athanassios Tzouvaras, in A note on real subsets of a recursively saturated model, Z. Math. Logik Grundlag, Math. 37 (1991) called such *R* imaginary

#### Lemma (Kueker-Reves Lemma)

Let  $\mathfrak{M}=(M,\dots)$  be countable. If for for every tuple  $\bar{a}$  in  $M^{<\omega}$  there are  $b\in R$  and  $c\notin R$  such that  $\operatorname{tp}(\bar{a},b)=\operatorname{tp}(\bar{a},c)$ , then R is absolutely undefinable.

# Absolute undefinability

### Corollary

If a relation R on a ct  $\mathfrak{M}$  is parametrically  $\mathcal{L}$  definable, for some logic  $\mathcal{L}$ , the R is parametrically  $\mathcal{L}_{\omega_1,\omega}$  definable.

#### Definition

A relation on the domain of a countable  $\mathfrak M$  is absolutely undefinable if it has  $2^{\aleph_0}$  automorphic images.<sup>a</sup>.

#### Lemma (Kueker-Reves Lemma)

Let  $\mathfrak{M}=(M,\dots)$  be countable. If for for every tuple  $\bar{a}$  in  $M^{<\omega}$  there are  $b\in R$  and  $c\notin R$  such that  $\operatorname{tp}(\bar{a},b)=\operatorname{tp}(\bar{a},c)$ , then R is absolutely undefinable.



<sup>&</sup>lt;sup>a</sup>Athanassios Tzouvaras, in A note on real subsets of a recursively saturated model, Z. Math. Logik Grundlag, Math. 37 (1991) called such *R* imaginary

# Absolute undefinability cannot be avoided

### Theorem (Barwise, Schlipf)

Every countable resplendent model has continuum many automorphisms.

#### Theorem (Schlipf)

If  $(\mathfrak{M},R)$  is countable, resplendent, and R is not parametrically definable in  $\mathfrak{M}$ , then has  $2^{\aleph_0}$  automorphic images.

#### Corollary

It  $\mathfrak M$  is countable, resplendent, and there is a parametrically undefinable R such that  $(\mathfrak M,R)\models\varphi(R)$ , then there is an absolutely undefinable R such that  $(\mathfrak M,R)\models\varphi(R)$ .

# Absolute undefinability cannot be avoided

### Theorem (Barwise, Schlipf)

Every countable resplendent model has continuum many automorphisms.

#### Theorem (Schlipf)

If  $(\mathfrak{M},R)$  is countable, resplendent, and R is not parametrically definable in  $\mathfrak{M}$ , then has  $2^{\aleph_0}$  automorphic images.

#### Corollary

It  $\mathfrak M$  is countable, resplendent, and there is a parametrically undefinable R such that  $(\mathfrak M,R)\models\varphi(R)$ , then there is an absolutely undefinable R such that  $(\mathfrak M,R)\models\varphi(R)$ .



# Absolute undefinability cannot be avoided

### Theorem (Barwise, Schlipf)

Every countable resplendent model has continuum many automorphisms.

#### Theorem (Schlipf)

If  $(\mathfrak{M},R)$  is countable, resplendent, and R is not parametrically definable in  $\mathfrak{M}$ , then has  $2^{\aleph_0}$  automorphic images.

### Corollary

It  $\mathfrak M$  is countable, resplendent, and there is a parametrically undefinable R such that  $(\mathfrak M,R)\models\varphi(R)$ , then there is an absolutely undefinable R such that  $(\mathfrak M,R)\models\varphi(R)$ .



- **①** A model of  $\operatorname{Th}(\mathbb{N},S)$  to a model of  $\operatorname{Th}(\mathbb{N},<)$ . Always exist. All expansions are absolutely undefinable when (M,S) is resplendent; otherwise they are all  $\mathcal{L}_{\omega_1,\omega}$  definable.
- A model Th(N, <) to a model of Pr. Exist if an only if (M, <) is resplendent and they are all absolutely undefinable (Emil Jeřábek).
- lack A model of Pr to a model of PA. Exist if an only if (M,+) is resplendent and they are all absolutely undefinable (Alfred Dolich, Simon Heller, based on the work of David Llewellyn-Jones on automorphisms of models of Pr.)
- lacktriangled A model of PA to a model of one of the axiomatic theories of truth or satisfaction. Exist if an only if  $(M,+,\times)$  is resplendent and they are all absolutely undefinable... a longer story.

- **1** A model of  $\operatorname{Th}(\mathbb{N},S)$  to a model of  $\operatorname{Th}(\mathbb{N},<)$ . Always exist. All expansions are absolutely undefinable when (M,S) is resplendent; otherwise they are all  $\mathcal{L}_{\omega_1,\omega}$  definable.
- **3** A model  $\operatorname{Th}(\mathbb{N},<)$  to a model of Pr. Exist if an only if (M,<) is resplendent and they are all absolutely undefinable (Emil Jeřábek).
- lack A model of Pr to a model of PA. Exist if an only if (M,+) is resplendent and they are all absolutely undefinable (Alfred Dolich, Simon Heller, based on the work of David Llewellyn-Jones on automorphisms of models of Pr.)
- ① A model of PA to a model of one of the axiomatic theories of truth or satisfaction. Exist if an only if  $(M,+,\times)$  is resplendent and they are all absolutely undefinable... a longer story.

- **1** A model of  $\operatorname{Th}(\mathbb{N},S)$  to a model of  $\operatorname{Th}(\mathbb{N},<)$ . Always exist. All expansions are absolutely undefinable when (M,S) is resplendent; otherwise they are all  $\mathcal{L}_{\omega_1,\omega}$  definable.
- ② A model  $\operatorname{Th}(\mathbb{N},<)$  to a model of Pr. Exist if an only if (M,<) is resplendent and they are all absolutely undefinable (Emil Jeřábek).
- ullet A model of Pr to a model of PA. Exist if an only if (M,+) is resplendent and they are all absolutely undefinable (Alfred Dolich, Simon Heller, based on the work of David Llewellyn-Jones on automorphisms of models of Pr.)
- lacksquare A model of PA to a model of one of the axiomatic theories of truth or satisfaction. Exist if an only if  $(M,+,\times)$  is resplendent and they are all absolutely undefinable... a longer story.

- **1** A model of  $\operatorname{Th}(\mathbb{N},S)$  to a model of  $\operatorname{Th}(\mathbb{N},<)$ . Always exist. All expansions are absolutely undefinable when (M,S) is resplendent; otherwise they are all  $\mathcal{L}_{\omega_1,\omega}$  definable.
- ② A model  $\mathrm{Th}(\mathbb{N},<)$  to a model of Pr. Exist if an only if (M,<) is resplendent and they are all absolutely undefinable (Emil Jeřábek).
- ullet A model of Pr to a model of PA. Exist if an only if (M,+) is resplendent and they are all absolutely undefinable (Alfred Dolich, Simon Heller, based on the work of David Llewellyn-Jones on automorphisms of models of Pr.)
- ullet A model of PA to a model of one of the axiomatic theories of truth or satisfaction. Exist if an only if  $(M,+,\times)$  is resplendent and they are all absolutely undefinable... a longer story.

# Let ${\mathfrak M}$ be a countable resplendent model of PA. The following sets are absolutely undefinable in ${\mathfrak M}$ :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.
  - $X \subseteq M$  is a class if for every a,  $\{x \in X : x < a\}$  is parametrically definable. If (M,X) is a model of  $\mathsf{PA}(X)$ , we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.
- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.



Let  $\mathfrak M$  be a countable resplendent model of PA. The following sets are absolutely undefinable in  $\mathfrak M$ :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.
  - $X \subseteq M$  is a class if for every a,  $\{x \in X : x < a\}$  is parametrically definable. If (M,X) is a model of  $\mathsf{PA}(X)$ , we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.
- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.



Let  $\mathfrak M$  be a countable resplendent model of PA. The following sets are absolutely undefinable in  $\mathfrak M$ :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.

 $X \subseteq M$  is a class if for every a,  $\{x \in X : x < a\}$  is parametrically definable. If (M,X) is a model of  $\mathsf{PA}(X)$ , we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.

- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.



Let  $\mathfrak M$  be a countable resplendent model of PA. The following sets are absolutely undefinable in  $\mathfrak M$ :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.
  - $X \subseteq M$  is a class if for every a,  $\{x \in X : x < a\}$  is parametrically definable. If (M,X) is a model of  $\mathsf{PA}(X)$ , we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.
- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.



Let  $\mathfrak M$  be a countable resplendent model of PA. The following sets are absolutely undefinable in  $\mathfrak M$ :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.

 $X \subseteq M$  is a class if for every a,  $\{x \in X : x < a\}$  is parametrically definable. If (M,X) is a model of  $\mathsf{PA}(X)$ , we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.

- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, *Full satisfaction classes, definability, and automorphisms,* Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.



Let  $\mathfrak M$  be a countable resplendent model of PA. The following sets are absolutely undefinable in  $\mathfrak M$ :

- (RK, Kotlarski 1986) Sets coded in resplendent elementary end extensions, in particular, inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.

 $X \subseteq M$  is a class if for every a,  $\{x \in X : x < a\}$  is parametrically definable. If (M,X) is a model of  $\mathsf{PA}(X)$ , we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.

- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, *Full satisfaction classes, definability, and automorphisms,* Notre Dame J. Formal Logic 63(2): 143-163 (May 2022).
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.

