Non-elementary cofinal extensions of models of fragments of Peano arithmetic

Sun Mengzhou

National University of Singapore
September 26, 2023

Ongoing joint work with Wong Tin Lok

This talk:

- Focus on cofinal extensions for models of strong fragments of arithmetic, especially the elementarity of extensions.
- Motivating Question: What 'controls' the elementarity of a cofinal extension?
Answer: Second-order theory of a definable cut。
Plan:
- Introduction.
- Non-elementary cofinal extension for countable model.
- A systematic way to 'compress' truth.

First-order Arithmetic

- The language of First-order Arithmetic

$$
\mathcal{L}_{1}=\{+, \times,<,=, 0,1\}
$$

- A formula is Δ_{0} if all its quantifiers are bounded i.e., in the form of $\exists x<t(\bar{y}) \phi(x, \bar{y})$ or $\forall x<t(\bar{y}) \phi(x, \bar{y})$.
- $\Sigma_{n}=\left\{\exists \overline{x_{1}} \forall \overline{x_{2}} \ldots Q \overline{x_{n}} \theta\left(\overline{x_{1}}, \ldots \overline{x_{n}}, \bar{a}\right) \mid \theta \in \Delta_{0}\right\}$, $\Pi_{n}=\left\{\forall \overline{x_{1}} \exists \overline{x_{2}} \ldots Q \overline{x_{n}} \theta\left(\overline{x_{1}}, \ldots \overline{x_{n}}, \bar{a}\right) \mid \theta \in \Delta_{0}\right\}$.
- A formula is Δ_{n} if it is equivalent to both a Σ_{n} and a Π_{n} formula(over some model or theory).
- I Σ_{n} consists of PA^{-}and the Induction for all Σ_{n} formula ϕ :

$$
\phi(0, \bar{c}) \wedge(\forall x(\phi(x, \bar{c}) \rightarrow \phi(x+1, \bar{c})) \rightarrow \forall x \phi(x, \bar{c}) .
$$

- B Σ_{n} consists of $\mathrm{I} \Sigma_{0}$ and the Collection for all Σ_{n} formula ϕ :

$$
\forall x<a \exists y \phi(x, y, \bar{c}) \rightarrow \exists b \forall x<a \exists y<b \phi(x, y, \bar{c})
$$

- \exp asserts the totality of exponential function.
- $\mathrm{PA}=\bigcup_{n \in \omega} \mathrm{I} \Sigma_{n}$.

First-order Arithmetic

Theorem (Paris-Kirby 1978)

$$
\mathrm{I} \Delta_{0}+\exp \dashv \mathrm{B} \Sigma_{1}+\exp \dashv \mathrm{I} \Sigma_{1} \dashv \mathrm{~B} \Sigma_{2} \dashv \mathrm{I} \Sigma_{2} \dashv \mathrm{~B} \Sigma_{3} \ldots
$$

and none of the converses holds.
Definition
We call models of $\mathrm{B} \Sigma_{n}+\neg \mathrm{I} \Sigma_{n}$ B-Models, and models of I $\Sigma_{n}+\neg \mathrm{B} \Sigma_{n+1}$ I-Models.

Cofinal Extensions vs Elementarity

Definition

Let $M, K \models \mathrm{PA}^{-}, M \subseteq K$

- K is a cofinal extension of $M\left(M \subseteq_{\text {cf }} K\right)$ if

$$
\forall x \in K \quad \exists y \in M \quad K \models x<y
$$

The extension is proper if $K \neq M$.

- For each $n \in \omega, K$ is a n-elementary extension of M $\left(M \preccurlyeq{ }_{n} K\right)$ if for every $\phi \in \Sigma_{n}, \bar{a} \in M$,

$$
M \models \phi(\bar{a}) \Longleftrightarrow K \models \phi(\bar{a}) .
$$

Convention: We assume all models mentioned satisfy $\mathrm{I} \Delta_{0}+\exp$. Since I $\Delta_{0}+\exp \vdash \mathrm{MRDP}$, we have 0-elementarity for any extension.

Cofinal Extensions vs Elementarity

Theorem (Gaifman-Dimitracopoulos 1980)
Let $n \in \omega, M, K \models \mathrm{PA}^{-}, M \subseteq_{\text {cf }} K$, if $M \models \mathrm{~B} \Sigma_{n+1}$, then
$M \preccurlyeq{ }_{n+2} K$. In particular, if $M \models \mathrm{PA}$, then $M \preccurlyeq K$.
Theorem (Kaye 1991)

- For each $n \in \omega$, every countable model of $\mathrm{B} \Sigma_{n+1}+\exp +\neg \mathrm{I} \Sigma_{n+1}$ admits a proper elementary cofinal extension.
- (Informally) Every sufficiently saturated countable model admits a proper elementary cofinal extension.

Question: How much non-elementarity can we get for cofinal extensions?

Non-elementary Cofinal Extension

Theorem

For every countable model $M \models \mathrm{I} \Delta_{0}+\exp$, if $M \not \vDash \mathrm{PA}$ then M admits a non-elementary cofinal extension.

- (Paris 1981, Friedman independently.) Every countable model $M \models \mathrm{I} \Sigma_{n}+\exp +\neg \mathrm{B} \Sigma_{n+1}$ admits a cofinal extension $K \models \mathrm{~B} \Sigma_{n+1}$. So we only need to consider B-models. $\left(M \models \mathrm{~B} \Sigma_{n+1}+\neg \mathrm{I} \Sigma_{n+1}.\right)$
- We can further require that there is $M \preccurlyeq L$ such that $M \subseteq_{\text {cf }} K \subseteq_{\mathrm{e}} L$ and $M \nprec K$. This answers a question negatively in Kaye's paper 'On Cofinal Extensions of Models of Fragments of Arithmetic'(1991).

Corollary
A countable model of $\mathrm{I} \Delta_{0}+\exp$ satisfy PA if and only if all of its cofinal extensions are fully elementary.

What Does $\neg \mathrm{I} \Sigma_{n+1}$ Provide Us?

Fact
If $M \models \neg \mathrm{I} \Sigma_{n+1}$, then:

- There is a Σ_{n+1}-definable proper cut $I \subseteq_{e} M$.
- There is a $\Sigma_{n} \wedge \Pi_{n}$-definable non-decreasing total function $G: I \rightarrow M$, whose range is cofinal in M.

Suppose $M \models \mathrm{~B} \Sigma_{n+1}$. Let $\phi(x, y) \in \Sigma_{n} \wedge \Pi_{n}$ defines the graph of G, then for any $K \supseteq_{\text {cf }} M, \exists y \phi(x, y)$ defines a cut $J \supseteq_{\text {cf }} I$. In particular, if ω is Σ_{n+1}-definable in M then it is still Σ_{n+1}-definable in any cofinal extension.

Non-elementary Cofinal Extension for B-Model

Fix $n \in \omega, M \models \mathrm{~B} \Sigma_{n+1}+\exp +\neg \mathrm{I} \Sigma_{n+1}$. $\operatorname{SSy}_{I}(M)=\{A \subseteq I \mid A$ coded in $M\}, \operatorname{SSy}(M)=\operatorname{SSy}_{\omega}(M)$.
Observation
If ω is Σ_{n+1}-definable in M, then we may describe the second-order property of $(\omega, \operatorname{SSy}(M))$ using first-order formula in M. e.g: $0^{\prime} \in \operatorname{SSy}(M)$ can be described as

$$
\exists a \forall i \in \omega\left(i \in a \leftrightarrow \exists s \in \omega\left(M_{i}(i) \text { halts with computation } s\right)\right) .
$$

Here $M_{i}(i)$ means the i -th Turing Machine with input i .
Cofinally extend M to K such that $\mathrm{SSy}(M)$ and $\operatorname{SSy}(K)$ satisfy different second-order properties.

Non-elementary Cofinal Extension for B-Model

Lemma

Every countable $M \models \neg \mathrm{I} \Sigma_{n+1}$ admits a cofinal extension in which ω is Σ_{n+1}-definable.
Proof Sketch: If ω is not Σ_{n+1}-definable in M, add a coded non-decreasing function into $K \supseteq_{\text {cf }} M$:

$$
f: \omega \rightarrow I
$$

where I is a Σ_{n+1}-definable cut in M, and Range $(f) \subseteq_{c f} I$. Now ω is Σ_{n+1}-definable in K, and I becomes non-semiregular.

Non-elementary Cofinal Extension for B-Model

Here $\operatorname{SSy}(M)$ is a β_{1}-model means $(\omega, \operatorname{SSy}(M)) \preccurlyeq \Sigma_{1}^{1}(\omega, \mathcal{P}(\omega))$.
Question: Are the non-elementarities here optimal?

Non-elementary Cofinal Extension for B-Model

Theorem
For each $n \in \omega$:

- There is a countable $M \models \mathrm{~B} \Sigma_{n+1}+\exp +\neg \mathrm{I} \Sigma_{n+1}$, such that for any cofinal extension $K \supseteq_{\text {cf }} M, M \preccurlyeq_{n+3} K$.
- There is a uncountable $M \models \mathrm{~B} \Sigma_{n+1}+\exp +\neg \mathrm{I} \Sigma_{n+1}$, such that for any cofinal extension $K \supseteq_{\text {cf }} M, M \preccurlyeq K$.

Compressing the Truth

We just mentioned that we can describe the second-order property of $\left(I, \mathrm{SSy}_{I}(M)\right)$ in M if I is definable.
Actually, the converse is also true: For fixed parameter, we can describe the first-order truth of M in $\left(I, \operatorname{SSy}_{I}(M)\right)$ if I is Σ_{n+1}-definable.

Two ingredients for compressing

- $\neg \mathrm{I} \Sigma_{n+1}$: Cofinal function $G: I \rightarrow M$.
- $\mathrm{B} \Sigma_{n+1}$: Encoding Δ_{n+1} formulas.

Encoding Δ_{n+1} over a Cut

Definition (Δ_{n+1} over a Cut)
We say that $\alpha(\bar{x}, \bar{i})$ is Δ_{n+1} over $\bar{i} \in I$, if $\alpha \in \Sigma_{n+1}$ and there is some $\beta \in \Pi_{n+1}$ such that

$$
M \models \forall x \forall \bar{i} \in I(\alpha(\bar{x}, \bar{i}) \leftrightarrow \beta(\bar{x}, \bar{i}))
$$

Theorem (Chong-Mourad Coding Lemma 1990)
If $M \models \mathrm{~B} \Sigma_{n+1}+\exp$ and I is a Σ_{n+1}-definable cut of $M, \alpha(\bar{x}, \bar{i})$ is Δ_{n+1} over $\bar{i} \in I$, then for all $b \in M$

$$
M \models \exists c(\forall x<b \forall \bar{i} \in I(\langle\bar{x}, \bar{i}\rangle \in c \leftrightarrow \alpha(\bar{x}, \bar{i}))
$$

Encoding Δ_{n+1} over a Cut

We also have $\mathrm{B} \Sigma_{n+1}$ over a Σ_{n+1} definable cut.
Theorem (Belanger-Chong-Li-Wong-Yang)
If $M \models \mathrm{~B} \Sigma_{n+1}+\exp$ and I is a Σ_{n+1}-definable cut of $M, \alpha(x, i)$ is Δ_{n+1} over $i \in I$, then for all $a \in M$

$$
M \models \forall x<a \exists i \in I \alpha(x, i) \rightarrow \exists b \in I \forall x<a \exists i<b \alpha(x, i)
$$

Rewriting System

For simplicity, we assume that $n=0$ and $I=\omega$. We fix some $M \models \mathrm{~B} \Sigma_{1}+\exp +\neg \mathrm{I} \Sigma_{1}$, so $G: \omega \rightarrow M$ is Δ_{0}-definable.

Observation 1
For any Π_{2} formula $\forall a \exists b \theta(a, b)$ where $\theta \in \Delta_{0}$:

$$
\begin{aligned}
& \forall a \exists b \theta(a, b) \\
\Leftrightarrow & \forall x \in \omega \exists y \in \omega \underbrace{\forall a<G(x) \exists b<G(y) \theta(a, b)}_{\alpha(x, y) \in \Delta_{1} \text { over } x, y \in \omega} \quad \text { G is Cofinal } \\
\Leftrightarrow & \exists f: \omega \rightarrow \omega \forall x \in \omega \alpha(x, f(x))
\end{aligned} \quad \text { Coding Lemma }
$$

$f: \omega \rightarrow \omega$ means f codes the graph of a total function from ω to ω.

Rewriting System

Temporarily let $\exists f$ abbreviates $\exists f: \omega \rightarrow \omega$.

Observation 2

For any Σ_{3} formula, it is equivalent to:

$$
\begin{array}{lll}
& \exists c \forall a \exists b \theta(a, b, c) & \\
\Leftrightarrow & \exists c \exists f \forall x \in \omega \alpha(x, f(x), c) & \text { Observation 1 } \\
\Leftrightarrow & \exists z \in \omega \exists f \exists c<G(z) \forall x \in \omega \alpha(x, f(x), c) & \text { G is Cofinal } \\
\Leftrightarrow & \exists z \in \omega \exists f \forall x^{\prime} \in \omega \underbrace{\exists c<G(z) \forall x<x^{\prime} \alpha(x, f(x), c)}_{\beta\left(z, x^{\prime},\left.f\right|_{x^{\prime}}\right) \in \Delta_{1} \text { over } z, x^{\prime},\left.f\right|_{x^{\prime}} \in \omega} & \text { B } \Sigma_{1} \text { over } \omega
\end{array}
$$

Here fixing $z \in \omega$, those $x,\left.f\right|_{x} \in \omega$ satisfy $\beta\left(z, x, f \upharpoonright_{x}\right)$ provides us an ω-branching tree.

Normal Form

With similar rewriting procedure(although more tedious!), we can show the following:

Theorem (Normal Form Theorem)

Let $m \in \omega, M \models \mathrm{~B} \Sigma_{1}+\exp +\neg \mathrm{I} \Sigma_{1}$ and ω is Σ_{1}-definable in M. Then any Σ_{m+3} formula $\phi(\bar{c})$ in M is equivalent to the form:

$$
\exists f_{1} \forall f_{2} \ldots Q f_{m} \bar{Q} x \in \omega \alpha\left(\bar{f} \upharpoonright_{x}, x, \bar{c}\right)
$$

for some $\alpha \in \Delta_{1}$ over $\bar{f} \upharpoonright_{x}, x \in \omega$ effectively decided by ϕ, and such equivalence is provable in $\mathrm{B} \Sigma_{1}+\exp +\neg \mathrm{I} \Sigma_{1}$.

A Bit Second-order Arithmetic

Definition

A second-order formula is $\mathrm{r} \Sigma_{m}^{1}$ if it has the form

$$
\exists f_{1} \forall f_{2} \ldots Q f_{m} \bar{Q} x S\left(x, \bar{f} \upharpoonright_{x}\right)
$$

where $S \in \Delta_{0}^{0}$ and $\exists f$ abbreviates $\exists f: \omega \rightarrow \omega$.

- $\mathrm{r} \Sigma_{m}^{1}$ and Σ_{m}^{1} coincide over ACA_{0}.
- For extensions of second-order structure, we write $(\omega, \mathcal{A}) \preccurlyeq_{\mathrm{r} \Sigma_{m}^{1}}(\omega, \mathcal{B})$ if $\mathrm{r} \Sigma_{m}^{1}$ formulas are absolute.

Correspondence Theorem

Lemma (Belanger-Wong)
Let $M \models \mathrm{~B} \Sigma_{1}+\exp , M \subseteq_{\text {cf }} K$, then $K \models \mathrm{~B} \Sigma_{1}+\exp$.
So the same normal form applied in M and K.
Theorem (First-order Second-order Correspondence)
For $M \models \mathrm{~B} \Sigma_{1}+\exp +\neg \mathrm{I} \Sigma_{1}, M \subseteq_{\text {cf }} K, \omega$ is Σ_{1}-definable in M, let $m \in \omega$,

$$
M \preccurlyeq_{m+3} K \Longleftrightarrow(\omega, \operatorname{SSy}(M)) \preccurlyeq_{r \Sigma_{m+1}^{1}}(\omega, \operatorname{SSy}(K))
$$

The correspondence helps us to convert a problem of first-order arithmetic into a problem of second-order arithmetic.

β_{m}-model

Definition (β_{m}-model)
For $m>0$, a second-order structure (ω, \mathcal{A}) is called a β_{m}-model if

$$
(\omega, \mathcal{A}) \preccurlyeq \Sigma_{m}^{1}(\omega, \mathcal{P}(\omega)) .
$$

Theorem (Mummert-Simpson 2004)
For each $m>0$, there is a countable β_{m}-model which is not a β_{m+1}-model.

Constructions of Cofinal Extension

For models of $\mathrm{B} \Sigma_{1}+\exp +\neg \mathrm{I} \Sigma_{1}$ in which ω is Σ_{1} definable:

- If $M \subseteq_{\text {cf }} K$ and $\operatorname{SSy}(M)=\operatorname{SSy}(K)$, then $M \preccurlyeq K$.
- For each $m \in \omega$, there is a countable $M \subseteq_{\text {cf }} K$ such that $M \not{ }_{m+2} K$ but $M \not \varliminf_{m+3} K$.
$\left((\omega, \operatorname{SSy}(M))\right.$ is a β_{m}-model but not a β_{m+1}-model.)

Constructions of Cofinal Extension

For models of $\mathrm{B} \Sigma_{1}+\exp +\neg \mathrm{I} \Sigma_{1}$:

- Every model M_{0} admits an uncountable cofinal extension $M_{0} \subseteq_{\text {cf }} M$, such that every cofinal extension of M is fully elementary. $(\operatorname{SSy}(M)=\mathcal{P}(\omega)$.)
- Every countable M_{0} admits a countable cofinal extension $M_{0} \subseteq_{\text {cf }} M$, such that any cofinal extension of M is 3-elementary. ($(\omega, \operatorname{SSy}(M))$ is a β_{1}-model.)

Constructions of Cofinal Extension

There is a countable M, such that for any extension $M \subseteq K$, there is a further elementary extension $K \preccurlyeq L$ such that $M \preccurlyeq{ }_{\mathrm{cf}} \bar{L} \subseteq_{\mathrm{e}} L . \quad((\omega, \operatorname{SSy}(M)) \preccurlyeq(\omega, \mathcal{P}(\omega))$.

This answers a main question positively in Kaye's another paper 'Model-theoretic properties characterizing Peano arithmetic'(1991).

One of the most annoying failures of this paper is the absence of a result similar to 3.7 showing (ii) to be insufficient to characterize PA over I $\Delta_{0}+\exp$ on its own.

Problem 4.2. For all $n \geq 1$, is there a countable model $\underline{I}_{n} \models \mathrm{I} \Delta_{0}+\exp +\mathrm{B} \Sigma_{n}+$ $\neg \mathrm{I} \Sigma_{n}$ such that whenever $L \succ I_{n}$ is countable there is $\bar{L} \succ L$ and $\bar{K} \subseteq_{e} \bar{L}$ such that $I_{n} \prec_{\text {cf }} \bar{K}$?

Answering Kaye's Questions

In the same paper, Kaye considers various model-theoretic conditions, and asks whether they characterize arithmetic theories extending PA. Here we can show that most of them fail to rule out the case of extending $\mathrm{B} \Sigma_{n+1}+\neg \mathrm{I} \Sigma_{n+1}$.

There are various natural variations on property (ii) of a theory T extending $\mathrm{I} \Delta_{0}+\exp$ that have been considered in preliminary drafts of this paper. These include:
(iii) For each complete consistent $S \supseteq T$ there is a model $K \vDash S$ such that whenever $L \succ K$ there is $M \subseteq_{\mathrm{e}} L$ with $K \prec_{\mathrm{cf}} M$.
(iv) For each complete consistent $S \supseteq T$ there is $K \models S$ such that whenever $L \succ K$ (no restriction on $\operatorname{card}(L)$) there is $\bar{L} \succ L$ and $\bar{K} \subseteq_{\mathrm{e}} \bar{L}$ with $K \prec_{\mathrm{cf}} \bar{K}$.
(v) For each consistent $S \supseteq T$ there are models K, L, M of S such that $K \prec_{\text {cf }}$ $M \subseteq_{\mathrm{e}} L$ with $M \neq L$ and $K \prec L$.
(vi) For each consistent $S \supseteq T$ there is a consistent $S^{*} \supseteq S$ such that whenever $K \subseteq_{\mathrm{cf}} L$ are both models of S^{*}, then $K \prec L$.

Each of these properties is true of the theory $T=\mathrm{PA}$; moreover, if T has any one of (iii), (iv) or (v), then $T \vdash \mathrm{I} \Sigma_{n} \Rightarrow T \vdash \mathrm{~B} \Sigma_{n+1}$ for each $n \in \mathbb{N}$.

Problem 4.3. If T extends $\mathrm{I} \Sigma_{n}+\exp$ and satisfies (vi), does $T \vdash \mathrm{~B} \Sigma_{n+1}$? Indeed, what theories $T \supseteq \mathrm{I} \Delta_{0}+\exp$ (other than extensions of PA) have property (vi)?

Problem 4.4. Are there theories T extending $\mathrm{B} \Sigma_{n+1}+\exp +\neg \mathrm{I} \Sigma_{n+1}$ for some $n \in \mathbb{N}$ satisfying (iii), (iv), (v) or (vi)?

Generalized Correspondence

Theorem (First-order Second-order Correspondence, Generalized)
For $n \in \omega$, suppose $M \models \mathrm{~B} \Sigma_{n+1}+\exp +\neg \mathrm{I} \Sigma_{n+1}$ with a Σ_{n+1}-definable cut I which is closed under exponentiation in M. $M \subseteq K$ is a $(n+2)$-elementary extension and $K \models \mathrm{~B} \Sigma_{n+1}$. Let J be the Σ_{n+1}-definable cut in K with the same definition as M, then $\left(I, \mathrm{SSy}_{I}(M)\right)$ naturally embed into $\left(J, \mathrm{SSy}_{J}(K)\right)$, and for all $m \in \omega$:

$$
M \preccurlyeq_{n+m+3} K \Longleftrightarrow\left(I, \operatorname{SSy}_{I}(M)\right) \preccurlyeq_{r \Sigma_{m+n+1}^{1}}\left(J, \operatorname{SSy}_{J}(K)\right)
$$

Summary

- Any countable model of $\mathrm{I} \Delta_{0}+\exp$ fail to satisfy PA admits a non-elementary cofinal extension.
- A systematic way to 'compress' truth in $M \models \mathrm{~B} \Sigma_{n+1}+\neg \mathrm{I} \Sigma_{n+1}$ in the second-order theory of its Σ_{n+1}-definable cut.
- For the case ω is Σ_{n+1}-definable, we construct models with various cofinal extension properties by considering its standard system.

Summary

- Any countable model of $\mathrm{I} \Delta_{0}+\exp$ fail to satisfy PA admits a non-elementary cofinal extension.
- A systematic way to 'compress' truth in $M \models \mathrm{~B} \Sigma_{n+1}+\neg \mathrm{I} \Sigma_{n+1}$ in the second-order theory of its Σ_{n+1}-definable cut.
- For the case ω is Σ_{n+1}-definable, we construct models with various cofinal extension properties by considering its standard system.

Thank You!

