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This talk concerns the general question which axioms can be added to the
theory of compositional truth (or satisfaction) over PA to yield a
nonconservative extension.

Our general framework: We add to PA a fresh unary predicate T (x)
together with axioms postulating that T behaves like a compositional
truth predicate. We (usually) call the resulting theory CT−.
The definition comes on the next slide.
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Definition
By CT− (compositional truth), we mean a theory obtained by adding to
PA the following axioms:

1 ∀s, t ∈ ClTermPA T (s = t) ≡ (val(s) = val(t)).
2 ∀ϕ ∈ SentPA T¬ϕ ≡ ¬Tϕ.
3 ∀ϕ, ψ ∈ SentPA Tϕ ∨ ψ ≡ Tϕ ∨ Tψ.
4 ∀v ∈ Var∀ϕ ∈ Form≤1

PA T∃vϕ ≡ ∃xTϕ[x/v ].
5 ∀s̄, t̄ ∈ ClTermSeqPA∀ϕ ∈ FormPA val(s̄) = val(t̄) → Tϕ(t̄) ≡ Tϕ(s̄).

By CT we mean CT− with full induction (in the extended language).
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It turns out that the compositional axioms by themselves are insufficient to
prove any new arithmetical theorems.

Theorem (Kotlarski–Krajewski–Lachlan)
CT− is conservative over PA.

On the other hand, we have the following easy observation:

Proposition
CT is not conservative over PA.

We prove the above proposition by showing by induction on the number of
steps in proofs that any formulae provable in PA is true under any
assignment, thus showing that the uniform reflection holds in CT. The
above argument overtly uses Π1-induction, but we can do better.
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Fact
Let CT0 be CT− with induction for ∆0-formulae containing the truth
predicate. Then CT0 is not conservative over PA.

In fact, there is a
number of natural truth-theoretic principles which are all equivalent to
CT0, for instance (Enayat – Pakhomov) “a disjunction over a finite set of
arithmetical sentences is true iff one of the disjuncts is.”

How about pure collection? It is a classical result that the full induction
scheme is equivalent to ∆0-induction together with the instances of the
following collection scheme:

∀x < a∃y ϕ(x , y) −→ ∃b∀x < a∃y < b ϕ(x , y).

Problem (Kaye)
Is CT− with the full collection scheme (for the extended language) a
conservative extension of PA?
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Theorem
CT− with the full collection scheme is a conservative extension of PA.

The proof strategy was suggested already by Kaye. Recall that M |= PA is
ω1-like if |M| = ℵ1, but for any a ∈ M, the initial segment [0, a] is
countable.

Remark
Let M |= PA be an ω1-like model. Then for any P ⊆ M, the expansion
(M,P) satisfies collection.

In order to prove the theorem, it is enough to prove the following result:

Theorem
Let M |= PA be an arbitrary countable model. Then there exists an ω1-like
elementary extension M ′ ≻ M and T ⊆ M ′ such that (M ′,T ) |= CT− and
thus automatically (M ′,T ) |= CT− + Coll(LPAT).
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There is one obvious prove strategy which does not work. It would be
enough to show that for any countable (M,T ) |= CT−, we can find a
proper end-extension (M ′,T ′) ⊃e (M,T ) to a model of CT−.

Notice that such an extension is automatically elementary in the
arithmetical part. If M |= ϕ(a), then (M,T ) |= T (ϕ(a)), so
(M ′,T ′) |= T ′(ϕ(a)) and since it also a model of CT−, M ′ |= ϕ(a).
Notice that the axioms of CT− are preserved in the unions of models.
They are Π2 modulo the arithmetical part and every arithmetical
property is equivalent to an atomic property in a model with the truth
predicate.

So this really almost works.
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Theorem (Smith)
There exists a countable model (M,T ) |= CT− such that there is no
proper end-extension (M,T ) ⊂e (M ′,T ′).

Proof.
Let (M,T ) |= CT− be a model such that for some nonstandard formula
ϕ(x , y) ∈ FormM

PA and for some a ∈ M, we have:

T (∀x < a∃!yϕ(x , y))
T (∀y∃x < aϕ(x , y)).

Notice that those properties have to be preserved in an end-extension
(M ′,T ′). Now take any c ∈ M ′ \ M. By assumption,

(M ′,T ′) |= ∃x < aT ′ϕ(x , c).

Fix a′ < a such that T ′ϕ(a′, c). Since M ′ ⊃e M, a′ ∈ M. By the first
clause, we know that there exists d ∈ M such that (M,T ) |= Tϕ(a′, d).
This contradicts the uniqueness of y such that T ′ϕ(a′, y).
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Now, it turns out that the counterexample found by Smith is essentially
the only obstruction there is to the existence of the end-extensions.

Definition
By the internal induction principle, INT, we mean the following sentence:

∀ϕ ∈ FormPA
[
Tϕ(0) ∧ ∀x

(
Tϕ(x) → Tϕ(S(x))

)
→ ∀xTϕ(x)

]
.

Theorem
Let (M,T ) |= CT− + INT be a countable model. Then there exists a
proper end-extension (M,T ) ⊂ (M ′,T ′) |= CT− + INT.
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In the rest of the proof, it will be more convenient to work with
satisfaction classes.

Instead of a unary predicate T (x), we will have a
binary relation S(ϕ, α), where ϕ is an arithmetical formula in the sense of
a model, and α is a ϕ-assignment, i.e., a function which assigns some
elements of a model to the free variables of ϕ.
We will assume that our satisfaction classes satisfy Tarski’s compositional
conditions on sets of formulae closed under direct subformulae. We will
also assume that they satisfy some strong regularity properties. This is
required both for the proof and to assure that they really correspond to
models of CT−.
We will denote the axioms for full satisfaction classes CS−. If I is a cut,
then CS− ↾ I are axioms stating that S satisfies compositional clauses for
all formulae ϕ with dpt(ϕ) ∈ I (but with arbitrary assignments).
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The proof of the theorem comes in two steps.

Lemma (Slicing)
Suppose that (M, S) |= CS− + INT. Then there exists a model
(M ′,S ′) ⊇ (M,S) such that:

(M ′, S ′) |= CS− ↾ M + INT.
For any a ∈ M and any function f : [0, a] → M ′ coded in M ′, the
image f ∩ M is not cofinal in M. (M is semiregular in M ′).

One more bit of classical models of PA. Recall that the extension M ⪯ M ′

is conservative if for any A definable in M ′ (with parametres), A ∩ M is
definable in M.
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Fix a model (M, S) |= CS− + INT and introduce a family of predicates Sϕ

for ϕ ∈ FormPA(M) defined by:

Sϕ(α) :≡ S(ϕ, α).

They form a countable family of predicates such that the model
(M,Sϕ)ϕ∈M satisfy the full induction. By MacDowell–Specker, there exists
a conservative elementary end-extension (M ′,S ′

ϕ)ϕ∈M . You glue S ′
ϕ back

together in order to obtain S ′ (you need regularity conditions to ensure
that you can account for ϕ whose depth is in M).
For semiregularity: let a ∈ M and let f ∈ M ′ be a function from a to M ′.
By conservativity, the set f ∩ M is definable in (M, Sϕ)ϕ∈M . Since the
latter structure satisfies induction, the image of f is not cofinal in M.
Notice that since M ′ is recursively saturated, the extension M ⪯E M ′ is
not conservative.
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Lemma (Upwards Extension)
Let (M, S) |= CS− ↾ I + INT, where I is a semiregular nonstandard cut in
M. Then there exists S ′ ⊇ S such that (M, S ′) |= CS− + INT.

Remark
The Lemma fails, if we drop the semiregularity assumption, even assuming
that I is an elementary submodel. The counterexample (joint with Roman
Kossak) uses a technique calles disjunctions with stopping conditions. In
the counterexample, we use a pair of models M ⪯ M ′ such that M ′ codes
a cofinal increasing ω-sequence in M.
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Now we turn to the proof of the Lemma.

We will use the recent(-ish)
construction of a satisfaction class by Fedor Pakhomov. In the proof, we
will make use of the notion of syntactic templates.
Essentially, a syntactic template of a formula is its normal form:

all terms composed of closed terms and free variables are collapsed to
single distinct free variables;
all bound variables are distinct (although they may appear several
times in the same formula; they are just quantified over exactly once);
bound and free variables are chosen in some canonical way so that a
formula ϕ with syntactic depth in M will have its template ϕ̂ ∈ M.
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Fix a model (M, S) |= CS− ↾ I + INT. We will define a mapping
f : Temp(M) → Temp(I) preserving syntactic operations which is an
identity on Temp(I).

Then we will set for any template ϕ:

S ′(ϕ, α) :≡ S(f (ϕ), α).

(This makes sense, since we assume that S satisfies some regularity
conditions). Since f will preserve syntactic operations (in particular it will
not change the variables in the outermost quantifiers), S ′ will satisfy
compositional clauses. Since an instance of the induction axiom will be
sent to an instance of the induction axiom, it will also preserve the internal
induction INT. Finally, we extend S ′ to all formulae in the canonical way
so that regularity conditions hold.
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Let ϕi , i ∈ ω be an enumeration of the syntactic templates in M.

For a
template ϕ and a ∈ M, let U(ϕ, a) be the set of the templates of formulae
ψ which occur at the syntactic tree of ϕ at the depth at most a.
We will construct a sequence of elements of I

a0 > a1 > . . .

and a sequence of functions

f0, f1, f2, . . .

such that the following conditions are satisfied:

dom(fn) = U(ϕn, an).
fn preserves the syntactic structure of the templates.
fn ↾ I is the identity function.
For an arbitrary i ≤ n,

fn ↾ U(ϕn, an) ∩ U(ϕi , an) = fi ↾ U(ϕn, an) ∩ U(ϕi , an).
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Suppose that we manage to construct such a sequence of functions.

Let

f (ϕn) = fn(ϕn).

We claim that f preserves the syntactic operations. Indeed, suppose that
ϕk , ϕl are direct subformulae of ϕm. Then the functions fm, fk agree on
U(ϕm, an) ∩ U(ϕk , an) and the functions fl , fk agree on
U(ϕm, an) ∩ U(ϕl , an), where n = max k, l ,m. In particular, f agrees with
fm on these three formulae, so it preserves the syntactic structure, since fm
does.
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Now, it is enough to construct the required sequence.

Suppose that we
have already defined f0, . . . , fn. We want to define an+1 and fn+1.
Consider the relation ⊴∗ which is the transitive closure of the direct
subformula relation ◁ taken within U(ϕn+1, an+1). (We have yet to define
an+1.) In other words, ϕ⊴∗ ψ iff there exists a chain of formulae

ϕ = ξ0 ◁ ξ1 ◁ . . .◁ ξd = ψ,

such that ξ̂i ∈ U(ϕn+1, an+1) for all i , where ξ̂ is the syntactic template of
ξ.
Since we want fn+1 to preserve syntactic operations, we only have to (and
we are only allowed to) define it on the templates ψ which are ⊴∗ weakly
minimal, where a template is weakly minimal if at least one of its direct
subformulae does not have a template in U(ϕn+1, an+1).
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Fix a formula ϕn+1.

Consider the templates of subformulae appearing at
most at the syntactic depth an. We can enumerate these formulae creating
a function g from some a ∈ I to M. By semiregularity, the formulae whose
templates are in I have syntactic depth bounded by some bn+1 ∈ I.
Set an+1 nonstandard such that

an+12an+1 ≤ an
2 .

For the ⊴∗-weakly minimal templates ψ in U(ϕn+1, an+1), we define
fn+1(ψ) as follows:

If ψ ∈ dom(fk) for some k ≤ n, we set fn+1(ψ) = fk(ψ), where k is
the greatest such index. (We take fn+1(ζ ⊙ η) = fk(ζ) ⊙ fn+1(η)).
Otherwise, we set fn+1(ψ) to be template of the unique formula
obtained by substituting 0 = 0 for any subformula of ϕ at the
syntactic depth bn+1 (We take fn+1(ζ ⊙ η) =
truncation(ζ) ⊙ fn+1(η)).
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Let us check that fn+1 satisfies the required conditions.

It is clear by
construction that fn+1 preserves the syntactic structure.
Claim I fn+1(ψ) = ψ for templates ψ ∈ I ∩ dom(fn+1).
Indeed, if ψ is minimal in U(ϕn+1, an+1), we defined f (ψ) to be the
truncation of ψ to the depth bn+1. By definition of bn+1 such a truncation
is the identity on the templates from I ∩ dom(fn+1). Applying the
compositional clauses, then preserves this property. (Similarly for the
weakly minimal formulae).
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Claim II
fn+1 ↾ U(ϕn+1, an+1) ∩ U(ϕk , an+1) = fk ↾ U(ϕn+1, an+1) ∩ U(ϕk , an+1).

Take any ψ ∈ U(ϕn+1, an+1) ∩ U(ϕk , an+1). By construction, fn+1(ψ) is
uniquely determined by the values of fn+1 at ⊴∗-smaller templates in
U(ϕn+1, an+1). Notice that there are at most an+12an+1 such templates. In
particular, if ψ ∈ U(ϕk , an+1), then actually all the ⊴∗-smaller templates
are in U(ϕk , an).
By the induction hypothesis, for all m ≥ k, if η ∈ U(ϕm, an) ∩ U(ϕk , an),
then fm(η) = fk(η). In particular for all minimal and (using induction
internally in the model) weakly minimal templates η ⊴∗-below ψ,
fk(η) = fn+1(η), guaranteeing that fk(ψ) = fn+1(ψ). This concludes the
proof.
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It seems that the argument can be modified to prove the end-extension
result for models of internal collection, but this has not yet been worked
out.

You could either try to get the analogous model-theoretic result for
models of collection, since we are not using the full power of either
conservativity or semiregularity.
Or possibly, work only with the models in which the value of a truth
predicate only depends on what happens at some uniformly fixed
syntactic depth a. (Models arising from Pakhomov’s construction of a
satisfaction class have this property).
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Thank you for your attention!
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