On Interpretations in Büchi Arithmetics

Alexander Zapryagaev

NRU Higher School of Economics

26 September 2023
42ème Journées sur les Arithmétiques Faibles
September 25-27, 2023, Karlovassi, Greece

Büchi arithmetics

Definition

A Büchi arithmetic $\mathrm{BA}_{n}, n \geq 2$, is the theory $\operatorname{Th}\left(\mathbb{N} ;=,+, V_{n}\right)$ where V_{n} is an unary functional symbol such that $V_{n}(x)$ is the largest power of n that divides x (we set $V_{n}(0):=0$ by definition).

These theories were proposed by R . Büchi in order to describe the recognizability of sets of natural numbers by finite automata through definability in some arithmetic language.
The theories BA_{n} are complete and decidable.
Cobham-Semënov theorem states that for multiplicatively independent natural numbers n, m (two numbers n, m are called multiplicatively independent if the equation $n^{k}=m^{l}$ has no integer solutions beside $k=I=0$), any set definable in BA_{n} and BA_{m} is definable in Presburger arithmetic $\operatorname{PrA}=\operatorname{Th}(\mathbb{N} ;=,+)$.

Büchi-Bruyère theorem

Let $\operatorname{Digit}_{n}(x, y)$ be the digit corresponding to n^{y} in the n-ary expansion of $x \in \mathbb{N}$. Consider an automaton over the alphabet $\{0, \ldots, n-1\}^{m}$ that, at step k, receives the input $\left(\operatorname{Digit}_{n}\left(x_{1}, k\right), \ldots, \operatorname{Digit}_{n}\left(x_{m}, k\right)\right)$ of the digits corresponding to n^{k} in the n-ary expansion of $\left(x_{1}, \ldots, x_{m}\right)$.
We say the automaton accepts the tuple $\left(x_{1}, \ldots, x_{m}\right)$ if it accepts the sequence of tuples $\left(\operatorname{Digit}_{n}\left(x_{1}, k\right), \ldots, \operatorname{Digit}_{n}\left(x_{m}, k\right)\right)$.

Proposition (Büchi 1960, Bruyère 1985, Haase, Różycki 2021)

Let $\varphi\left(x_{1}, \ldots, x_{m}\right)$ be a BA_{n}-formula. Then there is an effectively constructed automaton \mathcal{A} such that $\left(a_{1}, \ldots, a_{m}\right)$ is accepted by \mathcal{A} iff $\mathbb{N} \models \varphi\left(a_{1}, \ldots, a_{m}\right)$. Contrariwise, let \mathcal{A} be a finite automaton working on m-tuples of n-ary natural numbers. Then there is an effectively constructed BA_{n}-formula (of quantifier complexity not surpassing $\left.\Sigma_{2}\right) \varphi\left(x_{1}, \ldots, x_{m}\right)$ such that $\mathbb{N} \models \varphi\left(a_{1}, \ldots, a_{m}\right)$ iff $\left(a_{1}, \ldots, a_{m}\right)$ is accepted by \mathcal{A}.

Examples 1

Figure: Automaton for $=2(x, y)$

Examples 2

Figure: Automaton for $+_{2}(x, y, z)$ (* represents any other digit)

Examples 3

Figure: Automaton for $V_{2}(x, y)$ (* represents any other digit)

Interpretations

Let \mathcal{K}, \mathcal{L} be two first-order languages, \mathcal{K} has no functional symbols [Tarski, Mostowski, Robinson 1953].

Definition
A non-parametric m-dimensional interpretation ι of \mathcal{K} in an \mathcal{L}-structure \mathfrak{B} consists of the following \mathcal{L}-formulas:
(1) $D_{\iota}(\bar{y})$ (the domain formula);
(c) $P_{\iota}\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)$, for each predicate symbol $P\left(x_{1}, \ldots, x_{n}\right)$ in \mathcal{K} (including equality).

Here $\overline{x_{i}}, \bar{y}$ are tuples of length m.

Translation of formulas under interpretation

Definition

The translation $\varphi^{\iota}\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)$ of a \mathcal{K}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ into \mathcal{L} under interpretation ι is now constructed by induction:

- $\left(P\left(x_{1}, \ldots, x_{n}\right)\right)^{\iota}:=P_{\iota}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$;
- $(\varphi \wedge \psi)^{\iota}=\varphi^{\iota} \wedge \psi^{\iota},(\varphi \vee \psi)^{\iota}=\varphi^{\iota} \vee \psi^{\iota},(\varphi \rightarrow \psi)^{\iota}=\varphi^{\iota} \rightarrow \psi^{\iota}$, $(\neg \varphi)^{\iota}=\neg\left(\varphi^{\iota}\right)$;
- $(\exists x \psi(x))^{\iota}:=\exists \bar{x}\left(D(\bar{x}) \wedge \psi^{\iota}(\bar{x})\right),(\forall x \psi(x))^{\iota}:=\forall \bar{x}\left(D(\bar{x}) \rightarrow \psi^{\iota}(\bar{x})\right)$.

Internal models

As long as we fix some \mathcal{L}-structure \mathfrak{B} (such that $\left\{\bar{y} \mid D_{\iota}(\bar{y})\right\} \neq \varnothing$ and the translation of $=^{\iota}$ is a congruence), a \mathcal{K}-structure \mathfrak{A} emerges with the support $\left\{\bar{y} \in \mathfrak{B}^{m} \mid D_{\iota}(\bar{y})\right\} / \sim_{\iota}$ where \sim_{ι} is defined as $=\iota\left(\bar{x}_{1}, \bar{x}_{2}\right)$.
Such a structure \mathfrak{A} is called an internal model, and ι an interpretation of \mathfrak{A} in \mathfrak{B}.

We say that an interpretation from is unrelativized if the domain formula is trivial; it has absolute equality if $=$ is interpreted as the identity of tuples.

Interpretations of theories

Given two theories, T in the language \mathcal{K} and U in the language \mathcal{L}, an interpretation ι is called an interpretation of T in U if each theorem of T translated into a theorem of U.

Equivalently, for each model \mathfrak{B} of U , the corresponding internal model \mathfrak{A} is a model of T .

Definition
Interpretations ι_{1} and ι_{2} of T in U are called provably isomorphic if there is a formula $F(\bar{x}, \bar{y})$ in the language of U expressing the isomorphism f between the corresponding internal models of \mathfrak{A}_{1} and \mathfrak{A}_{2}, and the condition that f is an isomorphism is provable in U .

Interpretations in elementary theories

Note that two interpretations in the theory $\operatorname{Th}(\mathfrak{B})$ are provably isomorphic iff there is an isomorphism between their corresponding internal models in \mathfrak{B} expressible by an \mathcal{L}-formula.
As $\mathrm{BA}_{n}=\operatorname{Th}\left(\mathbb{N} ;=,+, V_{n}\right)$ it is sufficient to consider interpretations in its standard model \mathbb{N} when studying interpretations in BA_{n} itself.

Reflexive and sequential theories

A sufficiently strong first-order theory is called reflexive if it can prove the consistency of all its finitely axiomatizable subtheories. Well-known examples of reflexive theories include Peano arithmetic PA and Zermelo-Fraenkel set theory ZF.

Definition

Adjunctive set theory AS [Visser 2012] is the theory in the language $\{=, \in\}$ containing the following two axioms:
(1) $\exists x \forall y(y \notin x)$ (existence of the empty set);
(2) $\forall x \forall y \exists z \forall u(u \in z \leftrightarrow(u \in x \vee u=y))$ (each set can be extended by any single object).

A theory T is called sequential if if there is a one-dimensional, unrelativized interpretation with absolute equality of AS into T . Such theories are able to encode finite tuples of objects with a single object.

Visser's interpretation properties

All sequential theories that prove all instances of the induction scheme in their language are reflexive.
Each theory T that is both sequential and reflexive has the following property: T cannot be interpreted in any of its finite subtheories.
A. Visser has proposed to consider this interpretational-theoretic property as a generalization of reflexivity for weaker theories unable to formalize syntax.

Statement of the problem

In this context, Visser asked the question: for which arithmetical theories T all their interpretations in themselves are provably isomorphic to the trivial one? We note that, for theories without finite axiomatization, this also implies the absence of interpretations of T in any of its finitely axiomatizable subtheories. An example of a weak arithmetical theory for which this property does not hold is the theory $\operatorname{Th}(\mathbb{Z} ;=, S(x))$ of integer numbers with successor
$(y=S(x) \Leftrightarrow y=x+1)$.

What had been done

The author had previously established:
Theorem (Pakhomov, Zapryagaev 2020)
(1) Let ι be a (one-dimensional or multi-dimensional) interpretation of PrA in $(\mathbb{N} ;=,+)$. The the internal model induced by ι is always isomorphic to the standard one.
(2) This isomorphism can always be expressed by a formula in the language of PrA.

The result of point (1) was established by studying the linear orders interpretable in PrA, obtaining a necessary condition based on the notion of $V D^{*}$-rank [Khoussainov, Rubin, Stephan 2005].

Scattered linear orders and rank

Definition

Let $(L,<)$ be a linear order. By transfinite recursion, we introduce a family of equivalence relations $\simeq_{\alpha}, \alpha \in$ Ord on L :
(1) \simeq_{0} is equality;
(2) $a \simeq_{\alpha+1} b$, if $\mid\{c \in L \mid(a<c<b)$ or $(b<c<a)\} / \simeq_{\alpha} \mid$ is finite;
(3) $\simeq_{\lambda}=\bigcup_{\beta<\lambda} \simeq_{\alpha}$ when λ is a limit ordinal.

A rank $\operatorname{rk}(L,<) \in \operatorname{Ord} \cup\{\infty\}$ of the order $(L,<)$ is the smallest α such that L / \simeq_{α} is finite or ∞ if such does not exist.

It is known [Rosenstein 1982] that the scattered linear orders, that is, not containing a suborder isomorphic to \mathbb{Q}, exactly coincide with the orders of rank below ∞.

Rank condition on the definable orders

The following condition has been established:
Theorem
All linear orders m-dimensionally interpretable in $(\mathbb{N} ;=,+)$ have rank $\leq m$.
As $\mathbb{N}+\mathbb{Z} \cdot \mathbb{Q}$ is not even scattered, a non-standard model PrA cannot be interpreted in $(\mathbb{N} ;=,+)$.
In fact, the following complete criterion was very recently reached:
Theorem (Pakhomov, Zapryagaev submitted)
A linear order $(L,<)$ is m-dimensionally interpretable in $(\mathbb{N} ;=,+)$ for some $m \geq 1$ iff there exists some $k \in N$ and a PrA-definable set $D \in \mathbb{Z}^{k}$ such that L is isomorphic to the restriction of the lexicographic ordering on \mathbb{Z}^{k} onto D.

Orders definable in BA_{n}

Yet, the same rank condition is not extended to BA_{n}. The statement holds:

Lemma

For each n, there is an order of rank n interpretable in BA_{2}.
Examples follow.

$$
\begin{aligned}
& n=1: x \leq_{1} y:=x \leq y \\
& n=2: x \leq_{2} y:=V_{2}(x)<V_{2}(y) \vee V_{2}(x)=V_{2}(y) \wedge(x \leq y) \\
& n=3: x \leq_{3} y:=V_{2}(x)<V_{2}(y) \vee V_{2}(x)=V_{2}(y) \wedge V_{2}\left(x-V_{2}(x)\right)< \\
& V_{2}\left(y-V_{2}(y)\right) \vee V_{2}(x)=V_{2}(y) \wedge V_{2}\left(x-V_{2}(x)\right)=V_{2}\left(y-V_{2}(y)\right) \wedge x \leq y
\end{aligned}
$$

What is done

The following result is achieved:
Theorem (Zapryagaev 2023)
Let ι be a (one-dimensional or multi-dimensional) interpretation of BA_{n} in ($\mathbb{N} ;=,+, V_{n}$). The the internal model induced by ι is always isomorphic to the standard one.

This gives a partial positive answer to Visser's question.

Bi-interpretability

First we find that the answer to the question does not depend on which particular theory BA_{n} is considered.
The following claim holds:
Theorem
For any $k, I \geq 2, \mathrm{BA}_{k}$ is interpretable in BA_{l}.
This can be shown by a combination of two claims:
Lemma
Each $\mathrm{BA}_{k^{2}}$ can be interpreted in BA_{k}.

Lemma
Each BA_{k} can be interpreted in $\mathrm{BA}_{k+1}, k \geq 2$.

Automatic structures

Definition

A structure \mathfrak{B} in the language containing equality and predicate symbols P_{1}, \ldots, P_{n} is called automatic [Khoussainov, Nerode 2005] if there a language $\mathcal{L} \subseteq \Omega^{*}$ over a finite alphabet Ω and a surjective mapping $c: \mathcal{L} \rightarrow \mathfrak{B}$ such that the following sets are recognizable by some automaton over $\Omega\left(\bar{x}_{i} \in \Omega^{*}\right)$:
(1) The language \mathcal{L};
(2) The set of all pairs $(\bar{x}, \bar{y}) \in \mathcal{L}^{2}$ such that $c(\bar{x})=c(\bar{y})$;
© The set of all tuples $\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \in \mathcal{L}^{n}$ such that $\mathfrak{B} \models P_{i}\left(c\left(\bar{x}_{1}\right), \ldots, c\left(\bar{x}_{n}\right)\right)$.
As follows from the Büchi-Bruyère theorem, interpretability in the standard model of $B A_{n}$ is an alternate description of automatic structures.

Non-standard models of BA_{n}

It is required to find whether for each interpretation ι of BA_{n} in $\left(\mathbb{N} ;=,+, V_{n}\right)$ the internal model is isomorphic to the standard one. Hence, it is necessary to check whether some non-standard model of BA_{n} is interpretable in Büchi arithmetic.
The order-types of the non-standard models of BA_{n} are described by the following classic result.

Proposition (folklore, analogous to Kemeny 1958)
Each non-standard model \mathfrak{A} of BA_{n} has the order type $\mathbb{N}+\mathbb{Z} \cdot A$ where $\left\langle A,\left\langle_{A}\right\rangle\right.$ is a dense linear order without endpoints.

In particular, each countable non-standard model of BA_{n} has the order type $\mathbb{N}+\mathbb{Z} \cdot \mathbb{Q}$.

Interpretations in BA_{n}

Let ι be an interpretation of BA_{n} or PrA with a non-standard internal model. As \mathbb{N} is countable, its order type must be $\mathbb{N}+\mathbb{Z} \cdot \mathbb{Q}$. By defining the negative numbers, it is now possible to construct an interpretation ι^{\prime} of an ordered abelian group \mathcal{B}, with the order type $\mathbb{Z} \cdot \mathbb{Q}$.
Consider the galaxies

$$
[c]:=\{d \in \mathcal{B}| | c-d \mid \text { is a standard natural number }\} .
$$

The standard integers form one of the galaxies, namely, the one containing zero.
The addition $[c+d]:=[c]+[d]$ is well defined. Furthermore:
Lemma
Let \mathcal{Z} be the subgroup of the standard integers in \mathcal{B}. Then $\mathcal{B} / \mathcal{Z}$ contains a subgroup \mathcal{Q} isomorphic to $(\mathbb{Q},+)$.

Automatic abelian groups

One the other hand, as we have shown, each group interpretable in $B A_{n}$ is automatic. The following condition is known to hold for automatic abelian groups.

Theorem (Braun, Strüngmann 2011)

Let $(A,+)$ be an automatic torsion-free abelian group. Then there exists a subgroup $B \subseteq A$ isomorphic to \mathbb{Z}^{m} for some m such that the orders of the elements in $C=A / B$ are only divisible by a finite number of different primes p_{1}, \ldots, p_{s}.

It is shown this contradicts the existence of a subgroup Q isomorphic to $(\mathbb{Q},+)$ in \mathcal{B} / \mathbb{Z}.

Plans for further research

- Establish whether each isomorphism between the internal model of BA_{n} and $\left(\mathbb{N} ;=,+, V_{n}\right)$ is expressible by a BA_{n}-formula, obtaining the complete answer to Visser's question.
- Find an explicit axiomatization of BA_{n} for each n.
- Further elucidate the structure of non-standard models of BA_{n}.

Thank you!

Publications

- Pakhomov, Fedor, and Alexander Zapryagaev. "Multi-dimensional interpretations of Presburger arithmetic in itself." Journal of Logic and Computation 30, no. 8 (2020): 1681-1693. DOI: 10.1093/logcom/exaa050.
- Pakhomov, Fedor, and Alexander Zapryagaev. "Linear Orders in Presburger Arithmetic." Submitted to Journal of Symbolic Logic.
- Zapryagaev, Aleksandr Aleksandrovich. "On Interpretations of Presburger Arithmetic in Büchi Arithmetics." Doklady Mathematics 107, no. 2 (2023): 89-92. DOI: 10.1134/S1064562423700655.

References 1

- Braun, Gábor, and Lutz Strüngmann. "Breaking up finite automata presentable torsion-free abelian groups." International Journal of Algebra and Computation 21, no. 08 (2011): 1463-1472. DOI: 10.1142/S0218196711006625.
- Bruyère, Véronique. "Entiers et automates finis (1985)." Mémoire de fin d'études, Université de Mons.
- Büchi, J. Richard. "Weak second-order arithmetic and finite automata." Mathematical Logic Quarterly 6, no. 1-6 (1960). DOI: 10.1007/978-1-4613-8928-6_22.
- Cobham, Alan. "On the base-dependence of sets of numbers recognizable by finite automata." Mathematical systems theory 3, no. 2 (1969): 186-192. DOI: 10.1007/BF01746527.
- Haase, Christoph, and Jakub Różycki. "On the Expressiveness of Büchi Arithmetic." In Foundations of Software Science and Computation Structures: 24th International Conference, FOSSACS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27-April 1, 2021, Proceedings 24, pp. 310-323. Springer International Publishing, 2021. DOI: 10.1007/978-3-030-71995-1_16.
- Kemeny, John G. "Undecidable problems of elementary number theory." Mathematische Annalen 135 (1958): 160-169.

References 2

- Khoussainov, Bakhadyr, and Anil Nerode. "Automatic presentations of structures." In International Workshop on Logic and Computational Complexity, pp. 367-392. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. DOI: 10.1007/3-540-60178-3_93.
- Khoussainov, Bakhadyr, Sasha Rubin, and Frank Stephan. "Automatic linear orders and trees." ACM Transactions on Computational Logic (TOCL) 6, no. 4 (2005): 675-700. DOI: 10.1145/1094622.1094625.
- Rosenstein, Joseph G. Linear orderings. Academic press, 1982.
- Semenov, Aleksei L. "Presburgerness of predicates regular in two number systems." Siberian Mathematical Journal 18, no. 2 (1977): 289-300. DOI: 10.1007/BF00967164.
- Tarski, Alfred, Andrzej Mostowski, and Raphael Mitchel Robinson, eds. Undecidable theories. Vol. 13. Elsevier, 1953.
- Visser, Albert. "Interpretability logic." In Mathematical logic, pp. 175-209. Boston, MA: Springer US, 1990. DOI: 10.1007/978-1-4613-0609-2_13.

