Existential Definability with Addition and k-Regular Predicates

Mikhail R. Starchak
St. Petersburg State University, St. Petersburg, Russia
m.starchak@spbu.ru

Keywords: Existential definability • Automatic structures • Büchi arithmetic • Quantifier elimination • Decidability

1 Existential Definability with Addition and Bitwise Minimum

For every $R \subseteq \mathbb{N}^{n}$, integer base $k \geq 2$, and $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the k-ary representations of vectors from R define a language $L_{R} \subseteq\left(\Sigma_{k}^{n}\right)^{*}$ in a natural way. A relation R is called k-regular if there is a finite automaton \mathcal{A} over Σ_{k}^{n} that recognizes the language L_{R}. The Büchi-Bruyère's theorem [1] provides an FO-characterization of k-regular sets: they coincide with the sets definable in the structure $\left\langle\mathbb{N} ; 0,1,+, V_{k}, \leq\right\rangle$, where $V_{k}(x, y)$ is true whenever y is the largest power of k dividing x. As it was shown by Haase and Różycki [2], the $\exists \forall$-formulas of the corresponding language are expressive enough to define every k-regular set, but the \exists-formulas are less powerful. They give necessary conditions of \exists-definability in terms of densities of regular languages and, in particular, show that the set of all natural numbers with binary representations from the language $\{10,01\}^{*}$ is not \exists-definable. The following two questions immediately arise in connection with these results: whether there is a "natural" k-regular relation R such that every k-regular predicate is \exists-definable in $\langle\mathbb{N} ; 0,1,+, R, \leq\rangle$, and how can we completely describe the expressive power of the existential k-Büchi arithmetic.

The first problem can be solved by using the techniques of Matiyasevich [4], which were applied for arithmetization of Turing machines. Let $\&_{k}$ be the binary bitwise minimum operation of base k, where we assume that the natural number of smaller bit-length is supplemented with a sufficient number of leading zeros. Then we have the following existential FO-characterisation of k-regular relations.

Theorem 1 ([7]). For an integer $k \geq 2$ every relation is k-regular if and only if it is existentially definable in the structure $\left\langle\mathbb{N} ; 0,1,+, \&_{k}, \leq\right\rangle$.

For every word $w=a_{m} \ldots a_{0} \in \Sigma_{k}^{*}$, denote by $\llbracket w \rrbracket_{k}$ the integer $a_{m} k^{m}+\ldots+$ $a_{1} k+a_{0}$, and for a language $L \subseteq \Sigma_{k}^{*}$ define $\llbracket L \rrbracket_{k} \rightleftharpoons\left\{\llbracket w \rrbracket_{k}: w \in L\right\}$. We can now construct an existential definition of $\llbracket\{10,01\}^{*} \rrbracket_{2}$ in $\left\langle\mathbb{N} ; 0,1,+, \&_{2}, \leq\right\rangle$. In our formula, the subscript 2 is omitted, the property "to be a power of 2 " is denoted by P_{2}, and the binary function \sim is an analogue of bitwise negation, where the first argument specifies the bit-length of the result. We also use the
binary predicate symbol \preccurlyeq for the masking relation such that $x \preccurlyeq y \rightleftharpoons x \& y=x$. The values of t, q_{0}, q_{1}, q_{2} for the case when $x=1100101_{2}$ are given in Figure (a).

\ldots	0	0	0	1	1	0	0	1	0	1	x
\ldots	0	1									t
\ldots	0	1		1		1		1		1	q_{0}
\cdots	0				1						q_{1}
\cdots	0		1				1		1		q_{2}

(a)

(b)

$$
\begin{aligned}
& \exists t \exists q_{0} \exists q_{1} \exists q_{2}\left(P_{2}(t) \wedge x<t \wedge q_{0}+q_{1}+q_{2}=2 t-1 \wedge\right. \\
& q_{0} \& q_{1}=0 \wedge q_{0} \& q_{2}=0 \wedge q_{1} \& q_{2}=0 \wedge \\
& q_{0} \& 1=1 \wedge q_{0} \& t=t \wedge q_{0} \& x \preccurlyeq \frac{q_{2}}{2} \wedge q_{0} \& \sim\left(\frac{t}{2}, x\right) \preccurlyeq \frac{q_{1}}{2} \wedge \\
& \left.q_{1} \& x \preccurlyeq \frac{q_{0}}{2} \wedge q_{1} \& \sim\left(\frac{t}{2}, x\right) \preccurlyeq 0 \wedge q_{2} \& x \preccurlyeq 0 \wedge q_{2} \& \sim\left(\frac{t}{2}, x\right) \preccurlyeq \frac{q_{0}}{2}\right) .
\end{aligned}
$$

This formula describes the fact that the Σ_{2}-NFA from Figure (b) accepts the binary representation of x with some auxiliary leading zeros while reading it from left to right. It is now easy to obtain a \exists-definition of $\llbracket\{10,01\}^{*} \rrbracket_{2}$ in $\left\langle\mathbb{N} ; 0,1,+, \&_{2}, \leq\right\rangle$. We can even prove somewhat converse: every 2 -regular set is \exists-definable in the structure $\left\langle\mathbb{N} ; 0,1,+, \llbracket\{10,01\}^{*} \rrbracket_{2}, \leq\right\rangle$.

2 Existential Definability in Büchi Arithmetic

A characterisation of sets $S \subseteq \mathbb{N}$ that are existentially definable in k-Büchi arithmetic $\left\langle\mathbb{N} ; 0,1,+, V_{k}, \leq\right\rangle$ relies on the quantifier-elimination techniques developed by Semënov [5]. Having an existential formula, the bound variables are split into ordinary and special variables for the powers of k. The desired characterisation is based on the ordinary variable elimination procedure [6] and the following fundamental result by Semënov [5, Theorem 5]: every set $S \subseteq \mathbb{N}$ is \exists-definable in $\left\langle\mathbb{N} ; 0,1,+, P_{k}, \leq\right\rangle$ if and only if S can be represented as a finite union of sets that are definable via expressions of the form $v_{0} w_{1}^{*} v_{1} w_{2}^{*} v_{2} \ldots w_{n}^{*} v_{n} \Sigma_{l, m, c}$, where for every fixed $l, m, c \in \mathbb{N}$, the pattern $\Sigma_{l, m, c}$ specifies the set of all k-ary representations of non-negative integers congruent to c modulo m with bit-length divisible by l. Here we assume that $\Sigma_{0,0,0}=\{\epsilon\}$.

In order to formulate the theorem clearly, define for positive integers l and m a set of k-regular languages $\mathscr{C}_{l, m}$ as follows. This class contains the languages $\{w\}$ and w^{*} for every word $w \in \Sigma_{k}$ of length at most l, and the languages $\Sigma_{l^{\prime}, m^{\prime}, c^{\prime}}$ for every non-negative integers $l^{\prime} \leq l, m^{\prime} \leq m, c^{\prime} \in\left[0 . . m^{\prime}-1\right]$.

Theorem 2 ([6]). A k-regular set $R \subseteq \mathbb{N}$ is \exists-definable in $\left\langle\mathbb{N} ; 0,1,+, V_{k}, \leq\right\rangle$ if and only if there exist positive integers l and m such that R can be obtained by a finite number of applications of concatenation and union to $\mathscr{C}_{l, m}$.

This theorem allows us to make progress in solving the open problem by Haase and Różycki [2, Conclusion] concerning decidability of the \exists-definability property for the structure $\left\langle\mathbb{N} ; 0,1,+, V_{k}, \leq\right\rangle$. To apply the $\{\cdot, \cup\}$-representation theorem by Hashiguchi [3, Theorem 6.1] and thus to answer this question in the affirmative, we need to construct an upper bound on the integers l and m depending on the number of states of a given Σ_{k}-DFA.

The language $L \rightleftharpoons\{10,01\}^{*}$ provides another interesting example. Let L^{\complement} denote the complement of the language L. It is easy to see that $\llbracket L^{\mathrm{C}} \rrbracket_{2}$ is definable by the expression
$x \in\left(\Sigma_{0,0,0} \cup \Sigma_{1,1,0}\right) 11\left(\Sigma_{2,1,0} \cup 0 \Sigma_{2,1,0}(1 \cup 0)\right) \cup \Sigma_{1,1,0} 00\left(\Sigma_{2,1,0} \cup 0 \Sigma_{2,1,0}(1 \cup 0)\right)$.
Since every set definable in $\left\langle\mathbb{N} ; 0,1,+, P_{2}, \leq\right\rangle$ is existentially definable in this structure, the set $\llbracket L^{\complement} \rrbracket_{2}$ cannot be defined here. These examples lead to the following more general problem about the nature of existential definability in Presburger arithmetic with some classes of k-regular predicates \mathscr{R} : how can we describe a hierarchy of classes of predicates between semi-linear and k-regular with respect to the \exists-definability in $\langle\mathbb{N} ; 0,1,+, \mathscr{R}, \leq\rangle$?

The techniques that are used in the proofs of Theorems 1 and 2 can be applied to obtain definability and decidability results [6,7] outside of the k-regular world. In my talk, there will be considered the structure $\left\langle\mathbb{N} ; 0,1,+, \&_{k}, E q N Z B_{k}, \leq\right\rangle$, where $E q N Z B_{k}(x, y)$ is true if and only if x and y have the same number of non-zero bits in k-ary encoding, and the structure $\left\langle\mathbb{N} ; 0,1,+, V_{k}, \lambda x . k^{x}, \leq\right\rangle$. In both cases, the existential theories are decidable whereas the $\exists \forall$-theories are undecidable.

Acknowledgements. This work presents the results of a research supported by the Russian Science Foundation, project 23-71-01041.

References

1. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bulletin of the Belgian Mathematical Society - Simon Stevin 1(2), 191238 (jan 1994). https://doi.org/10.36045/bbms/1103408547
2. Haase, C., Różycki, J.: On the expressiveness of Büchi arithmetic. In: Foundations of Software Science and Computation Structures (FoSSaCS) 2021. LNCS, vol. 12650, pp. 310-323. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-71995-1_16
3. Hashiguchi, K.: Representation theorems on regular languages. Journal of Computer and System Sciences 27(1), 101-115 (aug 1983). https://doi.org/10.1016/0022-0000(83)90031-4
4. Matiyasevich, Yu.V.: A new proof of the theorem on exponential diophantine representation of enumerable sets (in Russian). Zapiski Nauchnykh Seminarov LOMI 60, 75-92 (1976). https://doi.org/10.1007/BF01693980, english translation: Journal of Soviet Mathematics 14, 5 (1980), 1475-1486
5. Semënov, A.L.: On certain extensions of the arithmetic of addition of natural numbers. Mathematics of the USSR-Izvestiya 15(2), 401-418 (1980). https://doi.org/10.1070/im1980v015n02abeh001252
6. Starchak, M.R.: Existential Büchi arithmetic and its decidable extensions, preprint
7. Starchak, M.R.: On the existential arithmetics with addition and bitwise minimum. In: Lecture Notes in Computer Science, pp. 176-195. Springer Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-30829-1_9
