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1. Introduction

Nonlinear processes in strongly coupled dusty plasmas (DP) have
attracted theoretical interest recently, motivated by recent experi-
ments. Dust (quasi-)lattices (DL) (2D or 3D) are typically formed
in the sheath region above the negative electrode in discharge exper-
iments, horizontally suspended at a levitated equilibrium position,
at z = zp, where gravity and electric (and/or magnetic) forces
balance. Appropriate trapping potentials have also enabled the

realization of 1D lattices, dominated by electrostatic interactions.
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FIG. 10, Expenmental confipuration for fonming a linear dust chain above a
long rectangular box on a negatively biassd mesh electrode.

(from [14])

The linear regime of low-frequency oscillations in DP crystals, in
the longitudinal (acoustic mode) and transverse (in-plane, shear
acoustic mode and vertical, off-plane optical mode) direction(s),
is now quite well understood. However, the nonlinear (NL) be-
haviour of DP crystals is little explored, and has lately attracted
experimental |[1-3] and theoretical [1-7] interest. We have recently
considered the coupling among the horizontal (~ Z) and vertical
(off-plane, ~ 2) degrees of freedom in dust mono-layers; a set of
NL equations for coupled longitudinal and transverse dust lattice

(LDL, TDL) motion was thus derived [1].

Here, we review the nonlinear dust grain excitations which may
occur in a DP crystal (assumed quasi-one-dimensional and infinite,
composed from identical grains, of equilibrium charge ¢ and mass
M, located at xp, = nrg, n € N'). Damping is omitted here.

2. Transverse envelope structures (continuum)

Taking into account the intrinsic nonlinearity of the sheath elec-
tric (and/or magnetic) potential, the vertical (off-plane) n—th
grain displacement 0z, = 2z, — 29 in a dust crystal (where
n=..—10,1,2..), obeys the equation

d*6 2z, d(dzp)
2

+ WCQF,O (0zpa1+ 0zp—1 —20zp) + wg 02,
+o (020)° + B (020)° = 0. (1)

(where coupling anharmonicity and second+ neighbor interactions
are omitted)
The characteristic frequency

/ 1/2
wr = |—qU (rg)/(Mrg)] /

is related to the (electrostatic) interaction potential; for a Debye-
Hiickel potential: Up(r) = (q/r)e~"/AD, one has

Wi p =whp exp(—k) (1+K)/K’
wpr, = [¢*/(M )\%)]1/ ? is the characteristic dust-lattice frequency:
Ap is the Debye length; k = rg/A\p is the DP lattice parameter.
The on-site electric potential near equilibrium (z = zp) reads

d(z) ~ d(zg) + M:wgdz%/Q + o (02n)° /34 6 (820)%/4] + ...

g " (G. Sorasio et al., 2002)
(in account of the electric and /or magnetic field inhomogeneity and
charge variations), which is related to the overall vertical force

F(z)=F,,. (2) —Mg=—-00(2)/0z.

el/m
Linear excitations, viz. dzy ~ cos ¢y, (here ¢, = nkrg— wt; k and
w are the wavenumber and frequency; damping is neglected) obey
the optic-like discrete backward wave |1] dispersion relation

WP = wé — 4WC2F,O sinQ(km/Z) = w%. (2)
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(from [1¢])

A multiple scale technique for a continuum wavepacket gives [5]:
Ozn ~ € (AP +cc) + € [wéZ) + (wg) e2ion 4 c.c.)] + ...

where w(<)2> ~ |A]? wg) ~ A®
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The amplitude A obeys the nonlinear Schrodinger equation:

0A 0% A )
Za—T+PW+Q’A‘ A=0, (3)

where {X, T} are the slow variables {e(z — vgt), €°t}.

The dispersion coefficient Pr = w/.(k)/2 takes negative (positive)
values for low (high) k.

The nonlinearity coefficient Q) = [10042/(3w3) —3 0] /2wy is pos-
itive for all known experimental values of ., 3 [3].

For small wavenumbers k (where PQ < 0), TDLWs will be mod-
ulationally stable, and may propagate in the form of dark/grey
envelope excitations (hole solitons or voids |°].

For larger k., modulational instability may lead to the formation
of bright (pulse) envelope solitons.

Exact expressions for these excitations can be found in [5].
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Fig. Envelope solitons of the (a, b) bright type; (¢, d) dark (black/grey) type.

3. Transverse Intrinsic Localized Modes (ILMs) — Dis-
crete Breathers (DBs)

[LMs, i.e. highly localized Discrete Breather (DB) and multi-
breather-type few-site vibrations have recently received increased
interest among researchers in solid state physics, due to their om-
nipresence in periodic lattices and remarkable physical properties
0]. Dusty plasma DB excitations were shown to occur in transverse
DL motion [7-10] from first principles (figure from [9]).

FIG. 5. (Color online) Time evolution of a 1:1 two-breather for FIG. 6. {(Color online) Time evolution of a 2:3 two-breather for
e=-0.016. e=-0.003.

The existence of such DB structures at a frequency wpp) generally
requires the non-resonance condition

nwpp # w(k) Vn e N

which 4s, remarkably, satisfied in all known TDLW experiments |1].
The existence of DBs in 2D (hexagonal) dusty plasma structures is
now under investigation [10].

4. Longitudinal envelope excitations

The NL longitudinal equation of motion (dx,, = x, — nrg) reads:

d?(6xp) L d(0xy)

dt? dt
— a9 [<5fbn+1 — 5azn)2 — (0xy — 5:1:”_1)2}

+aso |(0xper — 5n)° — (8, — 5:1:”_1)3} , (4

where the characteristic frequency is given by
wi,r, = [0 (ro)/M)] = 20, exp(—r) (1 + K + £7/2) /K

for Debye interactions.
The resulting acoustic linear mode* obeys

W = 4w% 0 sin’ (kro/2) = w%.

= W%,L (0xp1 1+ 021 — 202p)

One now obtains (to lowest order ~ €)

Oxy & € [ué1> +- (u<11> e'Pn 4 c.c.)] + €2 (ug) e ) + ...,

(1)

where Uy obey [11]
_5’u§1) 82u§1) (12 (1) pok? (1>8u(()1)
1
82“6) _ pOkQ 0 ‘u§1>‘2 (6)
0X? ”Ey,L — w%,OT(ZJ 0X

Here v, 1, = w} (k), and {X, T} are slow variables (as above).
We have defined:

po = —r3U" (rg) /M = 2a00r3,  qo = U™ (rg)rg/(2M) = 3azory

(both positive, and similar in magnitude for Debye interactions
1, 12]); recall that U is the interaction potential.
Eqs. (5), (6) can be combined into an NLSE in the form of Eq.

(3), for A = ug) here, with P = Py = w/ (k)/2 < 0. The sign of
Q > 0 (< 0) [I1] prescribes stability (instability) at low (high) k.

Longitudinal envelope excitations are asymmetric: rarefactive
bright or compressive dark envelope structures.
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Fig. (a) Bright type; (b) dark type asymmetric envelope solitons.

5. Longitudinal solitons

Equation (4) is essentially the equation of atomic motion in a chain
with anharmonic springs, i.e. in the celebrated FPU (Fermi-
Pasta-Ulam) problem. At a first step, one may adopt a continuum
description, viz. dxn(t) — wu(x,t). This leads to different nonlin-
ear evolution equations (depending on the simplifying hypotheses
adopted), some of which are critically discussed in [12]. What fol-
lows is a summary of the lengthy analysis therein.

Keeping lowest order nonlinear and dispersive terms, u(x,t) obeys

. . 9 CQL 9 2
u + Vu—cLum—Eroumm = —pouy gz + qo (Uz)” Ugy

(7)
where () = 0(+)/0z; cf, = wr, oTo; po and gy were defined above.
Assuming near-sonic propagation (i.e. v & ¢y ), and defining the
relative displacement w = u,, one has

wr — awwe + &w2w<+ bweee = 0 (8)

(for v = 0), where

a=po/(2cp) >0, a=qy/(2cr) >0, and b = cprE/24 > 0.
Following Melandsg [13], various studies have relied on the Ko-
rteweg - deVries (KAV) equation, i.e. Eq. (8) for a = 0, to
gain analytical insight in the compressive structures observed in
experiments |2]. Indeed, the KAV Eq. possesses negative (only,
here, since a > 0) supersonic pulse soliton solutions for w, im-
plying a compressive (anti-kink) excitation for u; the KdV soli-
ton is thus interpreted as a density variation in the crystal, viz.
n(x,t)/ng ~ —0u/0xr = —w. Also, the pulse width L and height
uq satisty uoL% = cst., a feature which is confirmed by experiments
2]. However, a ~ 2a in real Debye crystals (for k / 1), which in-
validates the KdV approximation a = 0 [12]). Instead, one may
employ the extended KdV Eq. (eKdV) (8), which accounts for both
compressive and rarefactive lattice excitations (exact expressions
in [12]). Alternatively, Eq. (7) can be reduced to a Generalized
Boussinesq (GBq) Equation [12]; again, for gy ~ a =~ 0, one re-
covers a Boussinesq (Bq) equation, widely studied in solid chains.
The GBq (Bq) equation yields, like its eKdV (KdV) counterpart,
both compressive and rarefactive (only compressive, respectively)
solutions; however, the (supersonic) propagation speed v now does
not have to be close to ¢y. The lengthy analysis (see in [12] for
details) is not reproduced here.

FdV va. Boussineaq, M = 1.1 FdvV va. Boudslneaq, M = 1.35
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Fig. KdV vs. Boussinesq (displacement) solitons, varying Mach no. M = v/cy.

6. Longitudinal Discrete Breathers ?

Following existing studies on Discrete Breathers (ILMs) in FPU
chains [cf. (4) above], it is natural to anticipate the existence of
such localized excitations associated with longitudinal dust grain
motion. A detailed investigation, in terms of real experimental
parameters, is on the way and will be reported soon.
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