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1. Introduction

Strongly-coupled dusty plasma (DP) lattices are known to occur in
low-temperature gas discharge experiments, generally in the form
of horizontal hexagonal two-dimensional (2D) quasi-crystalline ar-
rangements [1]. Voronoi diagrams bearing a honeycomb structure
were also recently observed in experiments [2].
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Fig.1: 2D structures in a DP crystal: (a) a hexagonal lattice and
(b) a honeycomb lattice

Transverse (off-plane, vertical, along gravity) dust-lattice (TDL) vi-
brations are associated with an inverse-dispersive, backward prop-
agating optic-like mode [3], viz. ω2 = ω2

g − 4ω2
0 sin2(kr0/2).

Discrete periodic media are today known to support single- and
multi-site Discrete Breather (DB) excitations, a direction not yet
explored in DP crystal experiments. Applying existing methodol-
ogy [4, 5], we have recently investigated [6, 7, 8] the occurrence of
DBs in 2D DP crystals, and explored their stability properties, in
terms of the dimensionless parameters ε = ω2

0/ω
2
g, α′ = αr0/ω

2
g

and β′ = βr2
0/ω

2
g (damping is omitted). Here ωg and ω0 are the

TDL mode eigenfrequency and (linear) coupling frequency, r0 is the
lattice spacing and α and β are related to the anharmonicity of the
plasma sheath potential – details in [9] – (primes to be dropped).
Our main results are summarized below.

2. The Klein-Gordon methodology

We consider a 2D array of one dimensional nonlinear point mass
oscillators, modelling dust grains, in an on-site potential V (x)
with V ′′(x) > 0. Each oscillator is linearly coupled to its near-
est neighbors. The Hamiltonian for both configurations is of the

form H =
∑

i
p2
i
2 +V (xi)− ε

2

∑
i,j(xj−xi)

2, where indices i and j
run over all sites and their first neighbors, respectively. The minus
sign in the coupling term is due to the inverse-dispersive charac-
ter of TDL oscillations. The corresponding discrete equations of
motion read

ẍi = −V ′(xi)− ε(
∑
j∈N

xj −Nxi) , (1)

where N is the set of neighbors of the i-site and N is the cardinality
of N which is 6 in the case of the hexagonal lattice and 3 in the
case of the honeycomb lattice.
Hexagonal lattice. Consider a hexagonal lattice with a quartic on-
site potential V (x) = x2/2 + ax3/3 + bx4/4 and a = 0.01, b =
−0.04 [10]. We consider single particle vibrations in V (anticontin-
uum limit), and then switch on the coupling via a continuation of
orbits for ε 6= 0. The stability of a single site breather is determined
by its Floquet multipliers i.e., the breather remains stable as long
as they remain in the unit circle of the complex plane. The numer-
ical investigation shows that the single site breather configuration
remains stable for all ε < 0.05 (which includes ε = 0.034, as in
[10]). For details see in [6].

Fig.2: A single site discrete breather
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Fig.3: The Floquet multipliers of a single site discrete breather.
The breather remains stable for all ε < 0.05

Consider now three moving adjacent central oscillators. The con-
ditions for the phase difference φi among successive oscillators for
three-site breathers to exist read φi = 0, φi = π or φi = 2π/3,
which correspond to an in-phase, an out of phase and a vortex
three-site breather respectively. In the case of [10], for the latter
two configurations, either one or two pairs of multipliers leave the
unit circle for arbitrary small ε. Thus, the only stable configuration
is the in-phase one and it remains stable until the multipliers of the
central sites collide with the linear spectrum and leave the unit cir-
cle [6], which in our case occurs for ε = 0.017. Stable in-phase
3-breathers are excluded in [10] (where ε = 0.034).

Fig.4: An in-phase three site discrete breather
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Fig.3: The Floquet multipliers of the in-phase three site discrete
breather.
Honeycomb lattice. Consider now six adjacent central oscillators
forming a unit cell in a honeycomb lattice; see Fig.1b. The condi-
tions for six-site breathers to exist are [8]: φi = 0, φi = π, φi = π

3
or φi = 2π/3. The first two cases correspond to an in-phase and
an out of phase six site breather. The latter two correspond to
the “charge-one” and the “charge-two” vortex six-site breathers re-
spectively. In this case the linearly stable configurations for ε small
enough are the in-phase breather and the charge-one vortex.

3. The Discrete Nonlinear Schrödinger (DLNS)
description.

To illustrate the generality of our findings, we also briefly consider
the case of the discrete nonlinear Schrödinger (DNLS) model. The
latter is a general envelope wave model for discrete nonlinear wave
equations of the Klein-Gordon type [11]. The DNLS is also a model
of particular relevance, in its own right, in the nonlinear optics of
fabricated AlGaAs waveguide arrays [12], as well as in dynamics of
Bose-Einstein condensate droplets in the presence of optical lattice
potentials [13].
In the DNLS setting, we will present a unified treatment of six site
and three site excitations. The relevenat model reads:

i
dum,n

dt
= ε

 ∑
<m′,n′>∈N

um′,n′ − |N |um,n

− |um,n|2um,n, (2)

where the summation is over the set N of nearest neighbors (de-
noted by < m′, n′ >) of the site (m, n), and um,n represents the
relevant complex field; notice that for the inter-site coupling ε, the
opposite than the standard sign has been used, as explained also
above in the KG case.
In the, so-called, anti-continuum (AC) limit of ε → 0 explicit
solutions over contours of nodes indexed by j can be repre-
sented without loss of generality as uj = exp(iθj) exp(it), where
θj ∈ [0, 2π). Then, following the considerations of [5], for such
solutions with M excited adjacent sites to persist for ε 6= 0,
gj ≡ sin(θj − θj+1) + sin(θj − θj−1) = 0, should be satisfied
for all j = 1, . . . ,M . The stability can also be determined from
the eigenvalues γj of the |M | × |M | Jacobian Jjk = ∂gj/∂θk.
In particular, it can be proved that the eigenvalues λj of the full
problem satisfy λj = ±

√
−2γjε. In the case of phase increments

of |θj+1 − θj| = ∆θ, it is in fact possible to compute the rele-
vant Jacobian eigenvalues explicitly and obtain for the full problem
(near-zero) eigenvalues the general, analytical expression

λj = ±

√
−8ε cos (∆θ) sin2

(
πj

|M |

)
, (3)

This expression can be used both for hexagonal and for honeycomb
lattices. Furthermore, it can be used both for M = 3 site and
for M = 6 site configurations. In the defocusing cases of interest
herein, it predicts that the in-phase configuration will be the only
stable 3-site configuration, while among 6-site configurations the
in-phase and the vortex of charge 1 are going to be the stable ones
(while the out-of-phase and charge 2 vortex will be unstable). Typi-
cal examples of the 6-site waveforms are shown with their eigenvalue
(λ = λr + iλi) analysis in Figs. 6 and 7.

Fig.6: Vortices of charge 1 (left) and 2 (right).The top row shows
the real part and middle the imaginary part. The waveforms and
the spectrum of linearization around them (bottom row) are shown
in both case for ε = 0.05.

Fig.7: In-phase (left) and out-of-phase hexapoles (left). The wave-
forms and the spectrum of linearization around them (bottom row)
are shown in each case for ε = 0.05.

4. Conclusions.

In this work, we have presented a series of novel results regard-
ing the potential of formation of nonlinear breathing excitations in
quasi-crystalline, non-square lattice arrangements in dusty plasmas.
Both Klein-Gordon and discrete nonlinear Schrödinger models were
used to illustrate the stability of in-phase structures for 3-site con-
tours and in-phase, as well as single-charge vortex excitations in
6-site contours. It would be of particular interest to consider such
configurations in low-temperature, gas-discharge experiments.
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