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Motivation

• We want to examine the possibility of existence of time non

reversible breather-solutions in a network of time-reversible

oscillators.

• In addition we want to determine the linear stability of these

solutions

By the term time-reversible solution we mean that there exist

initial conditions of the specific solution that satisfy

xi(−t) = xi(t) and pi(−t) = −pi(t) ∀ i = 1 . . . n

where n is the total number of degrees of freedom.



The System

The setting under consideration was proposed by MacKay & Aubry

in 1994.

With on-site potential and nearest neighbor interaction.
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The method

The anticontinuous limit

In the uncoupled limit ε = 0 we consider the 3 encircled oscillators

which we call “central” moving in identical T -periodic orbits with

arbitrary phases, while the rest lie on the stable equilibrium.

Consider the action-angle variables, where the action is defined by

Ii =

∮

γi

pjdqj

and wi is the corresponding angle variable. The motion of the

central oscillators is the described in these variables by

Ii = const.

wi = ωit + wi0 mod2π

This state describes a trivially localised and T -periodic motion for

the full system which is denoted by z0.



The method

Since every periodic orbit is defined modulo a phase shift it is more

consistent to work with the variables

ϑ = w3

φ1 = w1 − w3

φ2 = w2 − w3

A = I1 + I2 + I3

J1 = I1

J2 = I2

It is proven that the critical points of

Heff(J1, J2, A, φ1, φ2) =
1

T

∮

H ◦ z(t) dt,

are in one-on-one correspondence to breather solutions. Where z is

the periodic orbit which is continued by the previously described

unperturbed one, with respect to constant A.
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The method

We cannot compute z, but, in the lowest order of approximation we

can take z as the unperturbed one z0 and get to first order with

respect to ε

Heff = H0(J1, J2, A) + ε〈H1〉ϑ(J1, J2, A, φ1, φ2),

where

〈H1〉ϑ =
1

2π

∮

H1 ◦ z0 dϑ =
1

T

∮

H1 ◦ z0 dt = 〈H1〉t.

So the condition of existence of breathers becomes, under

non-degeneracy conditions

∂〈H1〉
∂φi

= 0, det

(

∂2〈H1〉
∂φi∂φj

)

6= 0

which coincides with the results of

[2]. V. Koukouloyannis and S. Ichtiaroglou, Phys. Rev. E 66 (2002),

066602.



A general triangular lattice

We consider a generic time-reversible oscillator by

x(t) =
∞
∑

n=0

An(I) cosnw =
∞
∑

n=0

An(I) cosn(ωt + ϑ).

Since H1 = x2
1 + x2

2 + x2
3 − x1x2 − x1x3 − x2x3

〈H1〉 = C(J)−1

2
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∞
∑

n=1

A1nA3n cosnφ1 + A2nA3n cos nφ2 + A1nA2n cosnφ3

}
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2
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nA2

n (sinnφ2 + sinnφ3) = 0.

Considering φ3 = φ2 − φ1, this is satisfied ∀An if ∀n ∈ N,

sin(nφ1) − sin[n(φ2 − φ1)] = 0

sin(nφ2) + sin[n(φ2 − φ1)] = 0.



A general triangular lattice

This system has at least the solutions
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which correspond to time-reversible breathers, and the solutions
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which correspond to time non–reversible breather solutions.



Linear Stability

In [1]. it is also proven that the linear stability of the breather

depends on the stability of the corresponding critical point of Heff .

So, we need the eigenvalues of the stability matrix

E = −ΩD2Heff

to lie in the imaginary axis for linear stability. By setting

Heff = H0 + ε〈H1〉 this matrix becomes
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Linear stability of the first class of time-reversible solutions

The eigenvalues of the first class of the time-reversible solutions are

λ1,2,3,4 = ±
√

−3cf(0)
√

ε + O(ε).

Since, f(0) = 1

2

∑

∞

n=1
n2A2

n > 0,

if εc > 0, the leading order term implies linear stability. But it is of

multiplicity 2 which could lead to instability due to higher order

terms.
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Linear stability of the first class of time-reversible solutions

The solution to this problem is the symplectic signature theory for

fixed points of Hamiltonian systems, which states that if the

quadrartic form which coresponds to

D2Heff

is definite, then the eigenvalues cannot leave the imaginary axis for

any small perturbation. The quadratic form for this particular case

is

δ2H =
3

2
c (J1 + J2)

2+
1

2
c (J1 − J2)

2+
1

2
εf (φ1 + φ2)

2+
3

2
εf (φ1 − φ2)

2

so it is definite if εc > 0 and the breather is linearly stable.



Linear stability of the second class of time-reversible breather

solutions

Linear stability of the second class of

time-reversible breather solutions

For the second class of reversible solutions we have

λ1,2 = ±
√

−c(2f(0) + f(π))
√

ε+O(ε), λ3,4 = ±
√

−3cf(π)
√

ε+O(ε)

and since

2f(0) + f(π) > 0

for this solution to be stable we need f(π) & εc > 0.

Since, in general in this case, the multiplicity of these eigenvalues is

1 there is no need for symplectic signature analysis.



Linear stability of time non-reversible case

Linear stability of time non-reversible case

The eigenvalues which correspond to the time non-reversible case

are

λ1,2,3,4 = ±i
√

3cf(2π/3)
√

ε + O(ε)

with corresponding quadratic form
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which is definite if εfc > 0



A more specific example

A lattice of coupled Morse oscillators

The Hamiltonian of the Morse oscillator is

H =
p2

2
+

(

e−x − 1
)2

while the averaged part of the perturbative

term of the Hamiltonian of the full sysytem is
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3

∑

i=1

∫

arctan
sin φi

z − cosφi

dφi + C(J)

with z = e2a and cosha = E−
1

2 .



Linear stability in the Morse oscillators lattice

The eigenvalues for the first class of time-reversible solutions are

λ1,2,3,4 = ±
√

6

z − 1

√
ε + O(ε)

while for the second class they are

λ1,2 = ±
√

2
z + 3

z2 − 1

√
ε + O(ε), λ3,4 = ±i

√

6

1 + z

√
ε + O(ε).

This means that the time-reversible solutions are unstable.

On the other hand, the eigenvalues for the time non-reversible case

are

λ1,2,3,4 = ±i

√

3
2 + z

1 + z + z2

√
ε + O(ε),

which means, that these solutions are linearly stable.



Conclusions

• We prooved the existence of time-reversible as well as

non-reversible discrete breathers in a network of time-reversible

oscillators.

• We provide a systematic way of acquiring the linear stability of

these breather-solutions.

• We applied these results in a triangular lattice of coupled

Morse oscillators and realize that in this specific case the

linearly stable breathers are the non-reversible ones.

• These results can be immediately generalised since we did not

make use of any special symmetry property of the specific

lattice.


